read_stall_retry/metrics_collector.py (107 lines of code) (raw):
#!/usr/bin/env python3
# Copyright 2025 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import pandas as pd
import fsspec
import gcsfs
import argparse
import logging
import os
import psutil
from concurrent.futures import ThreadPoolExecutor, as_completed
from tqdm import tqdm
from typing import Tuple, List, Optional
import pathlib
# Initialize the global logger with basic INFO level log.
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(filename)s:%(lineno)d - %(message)s')
logger = logging.getLogger(__name__)
def convert_bytes_to_mib(bytes: int) -> float:
"""Converts bytes to MiB."""
return bytes / (1024 ** 2)
def get_system_memory() -> Tuple[float, float, float]:
"""Retrieves total, used, and free system memory in MiB."""
mem = psutil.virtual_memory()
return convert_bytes_to_mib(mem.total), convert_bytes_to_mib(mem.used), convert_bytes_to_mib(mem.free)
def get_memory_usage() -> float:
"""Retrieves memory usage of the current process in MiB."""
process = psutil.Process(os.getpid())
mem_info = process.memory_info()
return convert_bytes_to_mib(mem_info.rss)
def process_csv(file: str, fs) -> Tuple[Optional[str], Optional[str], pd.DataFrame]:
"""Processes a single CSV file and extracts timestamps and data."""
try:
with fs.open(file, 'r') as f:
df = pd.read_csv(f)
if not df.empty:
return df['Timestamp'].iloc[0], df['Timestamp'].iloc[-1], df
else:
return None, None, pd.DataFrame()
except KeyError:
logger.error(f"Error processing file {file}: Required columns 'Timestamp' not found.")
return None, None, pd.DataFrame()
except pd.errors.EmptyDataError:
logger.warning(f"Empty data in file {file}.")
return None, None, pd.DataFrame()
except Exception as e:
logger.error(f"Error processing file {file}: {e}")
return None, None, pd.DataFrame()
def analyze_metrics(path: str, timestamp_filter: bool = True) -> Optional[pd.DataFrame]:
"""Analyzes metrics from CSV files in a GCS bucket or local filesystem."""
try:
if path.startswith("gs://"):
fs = gcsfs.GCSFileSystem()
else:
fs = fsspec.filesystem("local")
csv_files = list(fs.glob(path))
if not csv_files:
logger.warning(f"No CSV files found at {path}")
return None
logger.info(f"Total number of CSV files: {len(csv_files)}")
total_mem, used_mem, free_mem = get_system_memory()
logger.info(f"Total system memory: {total_mem:.2f} MiB, Used: {used_mem:.2f} MiB, Free: {free_mem:.2f} MiB")
logger.info(f"Memory usage by process before loading CSV files: {get_memory_usage():.2f} MiB")
results = []
with ThreadPoolExecutor(max_workers=os.cpu_count()) as executor:
futures = [executor.submit(process_csv, file, fs) for file in csv_files]
for future in tqdm(as_completed(futures), total=len(csv_files)):
results.append(future.result())
start_timestamps = []
end_timestamps = []
all_data = []
for start, end, df in results:
if start is not None and end is not None:
start_timestamps.append(start)
end_timestamps.append(end)
all_data.append(df)
combined_df = pd.concat(all_data)
logger.info(f"Memory usage by process after loading CSV files: {get_memory_usage():.2f} MiB")
if not start_timestamps or not end_timestamps:
logger.warning("No valid timestamps found.")
return None
min_timestamp = max(start_timestamps)
max_timestamp = min(end_timestamps)
if timestamp_filter:
combined_df['Timestamp'] = pd.to_datetime(combined_df['Timestamp'], unit='s')
combined_df = combined_df[
(combined_df['Timestamp'] >= pd.to_datetime(min_timestamp, unit='s')) &
(combined_df['Timestamp'] <= pd.to_datetime(max_timestamp, unit='s'))
]
if combined_df.empty:
logger.warning("No data remains after timestamp filtering.")
return None
return combined_df
except Exception as e:
logger.error(f"Error in analyze_metrics: {e}")
return None
def parse_args():
"""Parses command-line arguments."""
parser = argparse.ArgumentParser(description="Analyze metrics from GCS or local files.")
parser.add_argument(
"--metrics-path",
type=str,
default="gs://vipin-metrics/go-sdk/*.csv",
help="GCS or local path to metrics CSV files."
)
parser.add_argument(
"--timestamp-filter",
action="store_true",
help="Filter data by common timestamps across files."
)
return parser.parse_args()
def main():
"""Main function to execute the script."""
args = parse_args()
result_df = analyze_metrics(args.metrics_path, args.timestamp_filter)
if result_df is not None:
print(result_df['Overall Latency'].describe(percentiles=[0.05, 0.1, 0.25, 0.5, 0.9, 0.99, 0.999, 0.9999, 0.99999, 0.999999, 0.9999999]))
if __name__ == "__main__":
main()