in llm_demo/orchestrator/langgraph/tool_node.py [0:0]
def _func(self, input: dict[str, Any], config: RunnableConfig) -> Any:
if messages := input.get("messages", []):
output_type = "dict"
message = messages[-1]
else:
raise ValueError("No message found in input")
if not isinstance(message, AIMessage):
raise ValueError("Last message is not an AIMessage")
user_id_token = input.get("user_id_token")
def run_one(call: ToolCall, user_id_token: Optional[str]):
args = copy.copy(call["args"]) or {}
args["user_id_token"] = user_id_token
response = self.tools_by_name[call["name"]].invoke(args, config)
output = response.get("results")
sql = response.get("sql")
tool_call_id = call.get("id") or str(uuid.uuid4())
return ToolMessage(
content=str_output(output),
name=call["name"],
tool_call_id=tool_call_id,
additional_kwargs={"sql": sql},
)
with get_executor_for_config(config) as executor:
outputs = [
*executor.map(run_one, message.tool_calls, repeat(user_id_token))
]
if output_type == "list":
return outputs
else:
return {"messages": outputs}