llm_demo/orchestrator/langgraph/tool_node.py (96 lines of code) (raw):
# Copyright 2024 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import asyncio
import copy
import json
import uuid
from itertools import repeat
from typing import Any, Callable, Dict, Optional, Sequence, Union
from langchain_core.messages import AIMessage, AnyMessage, ToolCall, ToolMessage
from langchain_core.runnables import RunnableConfig
from langchain_core.runnables.config import get_executor_for_config
from langchain_core.tools import BaseTool
from langchain_core.tools import tool as create_tool
from langgraph.utils.runnable import RunnableCallable
def str_output(output: Any) -> str:
if isinstance(output, str):
return output
else:
try:
return json.dumps(output)
except Exception:
return str(output)
class ToolNode(RunnableCallable):
"""
A node that runs the tools requested in the last AIMessage. It can be used
either in StateGraph with a "messages" key or in MessageGraph. If multiple
tool calls are requested, they will be run in parallel. The output will be
a list of ToolMessages, one for each tool call.
"""
def __init__(
self,
tools: Sequence[Union[BaseTool, Callable]],
*,
name: str = "tools",
tags: Optional[list[str]] = None,
) -> None:
super().__init__(self._func, self._afunc, name=name, tags=tags, trace=False)
self.tools_by_name: Dict[str, BaseTool] = {}
for tool_ in tools:
if not isinstance(tool_, BaseTool):
tool_ = create_tool(tool_)
else:
base_tool_ = tool_
if hasattr(tool_, "name"):
self.tools_by_name[tool_.name] = base_tool_
def _func(self, input: dict[str, Any], config: RunnableConfig) -> Any:
if messages := input.get("messages", []):
output_type = "dict"
message = messages[-1]
else:
raise ValueError("No message found in input")
if not isinstance(message, AIMessage):
raise ValueError("Last message is not an AIMessage")
user_id_token = input.get("user_id_token")
def run_one(call: ToolCall, user_id_token: Optional[str]):
args = copy.copy(call["args"]) or {}
args["user_id_token"] = user_id_token
response = self.tools_by_name[call["name"]].invoke(args, config)
output = response.get("results")
sql = response.get("sql")
tool_call_id = call.get("id") or str(uuid.uuid4())
return ToolMessage(
content=str_output(output),
name=call["name"],
tool_call_id=tool_call_id,
additional_kwargs={"sql": sql},
)
with get_executor_for_config(config) as executor:
outputs = [
*executor.map(run_one, message.tool_calls, repeat(user_id_token))
]
if output_type == "list":
return outputs
else:
return {"messages": outputs}
async def _afunc(self, input: dict[str, Any], config: RunnableConfig) -> Any:
if messages := input.get("messages", []):
output_type = "dict"
message = messages[-1]
else:
raise ValueError("No message found in input")
if not isinstance(message, AIMessage):
raise ValueError("Last message is not an AIMessage")
user_id_token = input.get("user_id_token")
async def run_one(call: ToolCall, user_id_token: Optional[str]):
args = copy.copy(call["args"]) or {}
args["user_id_token"] = user_id_token
response = await self.tools_by_name[call["name"]].ainvoke(args, config)
output = response.get("results")
sql = response.get("sql")
tool_call_id = call.get("id") or str(uuid.uuid4())
return ToolMessage(
content=str_output(output),
name=call["name"],
tool_call_id=tool_call_id,
additional_kwargs={"sql": sql},
)
outputs = await asyncio.gather(
*(run_one(call, user_id_token) for call in message.tool_calls)
)
if output_type == "list":
return outputs
else:
return {"messages": outputs}