experiments/legacy/backend/api.py (44 lines of code) (raw):
# Copyright 2023 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Expose REST API for product cataloging functionality."""
import os
from typing import Optional
from fastapi import FastAPI, Query
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
import attributes
import category
import marketing
class Product(BaseModel):
description: str
category: Optional[list[str]] = []
main_image_base64: Optional[str] = None
app = FastAPI()
origins = [
"http://localhost:4000",
"http://localhost:8080",
"https://retail-shared-demos.uc.r.appspot.com",
]
app.add_middleware(
CORSMiddleware,
allow_origins=origins,
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
@app.post("/v1/categories/")
def suggest_categories(product: Product) -> list[list[str]]:
"""Suggest categories for product.
Args:
- description: Sparse description of product
- category (optional): If one or more category levels is known
include this to restrict the suggestions space.
- example 1: ['Mens']
will only return suggestiongs with top level category 'Mens'
- example 2: ['Mens', 'Pants']
will only return suggestions with top level category 'Mens'
and second level category 'Pants'
- main_image_base64 (optional): base64 encoded string representing product
image.
Returns:
The category suggestions ordered from high to low confidence. Returned as
a list of lists. Each inner list represents one fully qualified category
with each string in the list representing a category level e.g.
['Mens', 'Pants', 'Jeans']
"""
return category.retrieve_and_rank(
product.description,
product.main_image_base64,
base64=True,
filters=product.category)
@app.post("/v1/marketing/")
def generate_marketing_copy(
description: str, attributes: dict[str, str]) -> str:
"""Generate Marketing Copy.
Args:
- description: sparse description of product
- attributes: pass as JSON key value pairs e.g. {'color':'green', 'pattern': 'striped'}
Returns:
Marketing copy that can be used for a product page.
"""
return marketing.generate_marketing_copy(description, attributes)
@app.post("/v1/attributes/")
def suggest_attributes(product: Product) -> dict[str,str]:
"""Suggests attributes for product.
Args:
- description: Sparse description of product
- category (optional): If provided will only consider products in the same
category for attributes grounding. Supports partial categories as well.
Experiment with passing different levels of categories for exploration vs.
exploitation trade-off.
- main_image_base64 (optional): base64 encoded string representing product
image.
Returns:
JSON dictionary representing attributes as key value pairs e.g.
{'color':'green', 'pattern': 'striped'}
"""
return attributes.retrieve_and_generate_attributes(
product.description,
product.category,
product.main_image_base64,
base64=True,
filters=product.category)