in backend/matching-engine/services/text_to_image_match_service.py [0:0]
def convert_text_to_embeddings(self, target: str) -> Optional[List[float]]:
# create transformer-readable tokens
inputs = self.tokenizer(target, return_tensors="pt").to(self.device)
# use CLIP to encode tokens into a meaningful embedding
text_emb = self.model.get_text_features(**inputs)
text_emb = text_emb.cpu().detach().numpy()
if np.any(text_emb):
return text_emb[0].tolist()
else:
return None