backend/matching-engine/services/palm_text_match_service.py (101 lines of code) (raw):
# Copyright 2023 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import random
from typing import Dict, List, Optional
import google.auth
import google.auth.transport.requests
import redis
import requests
from google.cloud.aiplatform.matching_engine import matching_engine_index_endpoint
import tracer_helper
from services.match_service import (
CodeInfo,
Item,
MatchResult,
VertexAIMatchingEngineMatchService,
)
# Load the "Vertex AI Embeddings for Text" model
from vertexai.preview.language_models import TextEmbeddingModel
logger = logging.getLogger(__name__)
tracer = tracer_helper.get_tracer(__name__)
class PalmTextMatchService(VertexAIMatchingEngineMatchService[Dict[str, str]]):
@property
def id(self) -> str:
return self._id
@property
def name(self) -> str:
"""Name for this service that is shown on the frontend."""
return self._name
@property
def description(self) -> str:
"""Description for this service that is shown on the frontend."""
return self._description
@property
def allows_text_input(self) -> bool:
"""If true, this service allows text input."""
return True
@property
def allows_image_upload(self) -> bool:
"""If true, this service allows text input."""
return True
@property
def code_info(self) -> Optional[CodeInfo]:
"""Info about code used to generate index."""
return self._code_info
def __init__(
self,
id: str,
name: str,
description: str,
words_file: str,
index_endpoint_name: str,
deployed_index_id: str,
redis_host: str, # Redis host to get data about a match id
redis_port: int, # Redis port to get data about a match id
code_info: Optional[CodeInfo] = None,
) -> None:
self._id = id
self._name = name
self._description = description
self._code_info = code_info
with open(words_file, "r") as f:
prompts = f.readlines()
self.prompts = [prompt.strip() for prompt in prompts]
self.index_endpoint = (
matching_engine_index_endpoint.MatchingEngineIndexEndpoint(
index_endpoint_name=index_endpoint_name
)
)
self.deployed_index_id = deployed_index_id
self.redis_client = redis.StrictRedis(host=redis_host, port=redis_port)
self.model: TextEmbeddingModel = TextEmbeddingModel.from_pretrained(
"textembedding-gecko@001"
)
@tracer.start_as_current_span("get_suggestions")
def get_suggestions(self, num_items: int = 60) -> List[Item]:
"""Get suggestions for search queries."""
return random.sample(
[Item(id=word, text=word, image=None) for word in self.prompts],
min(num_items, len(self.prompts)),
)
@tracer.start_as_current_span("get_by_id")
def get_by_id(self, id: str) -> Optional[Dict[str, str]]:
"""Get an item by id."""
retrieved = self.redis_client.hgetall(str(id))
if retrieved is not None:
# Convert the byte strings to regular strings
return {key.decode(): value.decode() for key, value in retrieved.items()}
else:
return None
def encode_texts_to_embeddings(self, sentences: List[str]) -> List[List[float]]:
embeddings = self.model.get_embeddings(sentences)
return [embedding.values for embedding in embeddings]
@tracer.start_as_current_span("convert_text_to_embeddings")
def convert_text_to_embeddings(self, target: str) -> Optional[List[float]]:
return self.encode_texts_to_embeddings(sentences=[target])[0]
@tracer.start_as_current_span("convert_match_neighbors_to_result")
def convert_match_neighbors_to_result(
self, matches: List[matching_engine_index_endpoint.MatchNeighbor]
) -> List[Optional[MatchResult]]:
items = [self.get_by_id(match.id) for match in matches]
return [
MatchResult(
title=item["title"],
# There is a bug in matching engine where the negative of DOT_PRODUCT_DISTANCE is returned, instead of the distance itself.
distance=max(0, 1 - match.distance),
description=item["body"] + "...",
url=f"https://stackoverflow.com/questions/{match.id}",
)
if item is not None and len(item.items()) > 0
else None
for item, match in zip(items, matches)
]