backend/matching-engine/services/sentence_transformer_service.py (94 lines of code) (raw):
# Copyright 2023 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import random
from typing import List, Optional
import numpy as np
import redis
from google.cloud.aiplatform.matching_engine import matching_engine_index_endpoint
from sentence_transformers import SentenceTransformer
import tracer_helper
from services.match_service import (
CodeInfo,
Item,
MatchResult,
VertexAIMatchingEngineMatchService,
)
logger = logging.getLogger(__name__)
tracer = tracer_helper.get_tracer(__name__)
class SentenceTransformerMatchService(VertexAIMatchingEngineMatchService[str]):
@property
def id(self) -> str:
return self._id
@property
def name(self) -> str:
"""Name for this service that is shown on the frontend."""
return self._name
@property
def description(self) -> str:
"""Description for this service that is shown on the frontend."""
return self._description
@property
def allows_text_input(self) -> bool:
"""If true, this service allows text input."""
return True
@property
def code_info(self) -> Optional[CodeInfo]:
"""Info about code used to generate index."""
return self._code_info
def __init__(
self,
id: str,
name: str,
description: str,
words_file: str,
sentence_transformer_id_or_path: str,
index_endpoint_name: str,
deployed_index_id: str,
redis_host: str, # Redis host to get data about a match id
redis_port: int, # Redis port to get data about a match id
code_info: Optional[CodeInfo] = None,
) -> None:
self._id = id
self._name = name
self._description = description
self._code_info = code_info
with open(words_file, "r") as f:
questions = f.readlines()
self.questions = [question.strip() for question in questions]
self.encoder = SentenceTransformer(sentence_transformer_id_or_path)
self.index_endpoint = (
matching_engine_index_endpoint.MatchingEngineIndexEndpoint(
index_endpoint_name=index_endpoint_name
)
)
self.deployed_index_id = deployed_index_id
self.redis_client = redis.StrictRedis(host=redis_host, port=redis_port)
@tracer.start_as_current_span("get_suggestions")
def get_suggestions(self, num_items: int = 60) -> List[Item]:
"""Get suggestions for search queries."""
return random.sample(
[Item(id=None, text=word, image=None) for word in self.questions],
min(num_items, len(self.questions)),
)
@tracer.start_as_current_span("get_by_id")
def get_by_id(self, id: str) -> Optional[str]:
"""Get an item by id."""
item = self.redis_client.get(str(id))
return item.decode() if item is not None else None
@tracer.start_as_current_span("get_by_ids")
def get_by_ids(self, ids: List[str]) -> List[Optional[str]]:
"""Get an item by id."""
items = [self.redis_client.get(str(id)) for id in ids]
return [item.decode() if item is not None else None for item in items]
@tracer.start_as_current_span("convert_text_to_embeddings")
def convert_text_to_embeddings(self, target: str) -> Optional[List[float]]:
vector = self.encoder.encode(target)
if np.any(vector):
return vector.tolist()
else:
return None
@tracer.start_as_current_span("convert_match_neighbors_to_result")
def convert_match_neighbors_to_result(
self, matches: List[matching_engine_index_endpoint.MatchNeighbor]
) -> List[Optional[MatchResult]]:
items = self.get_by_ids(ids=[match.id for match in matches])
return [
MatchResult(
title=item,
# There is a bug in matching engine where the negative of DOT_PRODUCT_DISTANCE is returned, instead of the distance itself.
distance=max(0, 1 - match.distance),
url=f"https://stackoverflow.com/questions/{match.id}",
)
for item, match in zip(items, matches)
]