backend/time-series-forecasting/training_methods/training_method.py (47 lines of code) (raw):
# Copyright 2022 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import abc
from typing import Any, Dict
from models import dataset, forecast_job_request
class TrainingMethod(abc.ABC):
@property
@abc.abstractmethod
def id(self) -> str:
"""A unique id representing this training method.
Returns:
str: The id
"""
pass
@property
@abc.abstractmethod
def display_name(self) -> str:
"""A display_name representing this training method.
Returns:
str: The name
"""
pass
@abc.abstractmethod
def dataset_time_series_identifier_column(
self, job_request: forecast_job_request.ForecastJobRequest
) -> str:
"""The column representing the time series identifier variable in the dataset dataframe.
Returns:
str: The column name
"""
pass
@abc.abstractmethod
def dataset_time_column(
self, job_request: forecast_job_request.ForecastJobRequest
) -> str:
"""The column representing the time variable in the dataset dataframe.
Returns:
str: The column name
"""
pass
@abc.abstractmethod
def dataset_target_column(
self, job_request: forecast_job_request.ForecastJobRequest
) -> str:
"""The column representing the target variable in the dataset dataframe.
Returns:
str: The column name
"""
pass
@abc.abstractmethod
def train(
self,
dataset: dataset.Dataset,
model_parameters: Dict[str, Any],
prediction_parameters: Dict[str, Any],
) -> str:
"""Train a job and return the model URI.
Args:
dataset (dataset.Dataset): Input dataset.
model_parameters (Dict[str, Any]): The model training parameters.
prediction_parameters (Dict[str, Any]): The prediction parameters.
Returns:
str: The model URI
"""
pass
@abc.abstractmethod
def evaluate(self, model: str) -> str:
"""Evaluate a model and return the BigQuery table ID to its evaluation
table.
Args:
model (str): Model to evaluate.
Returns:
str: The BigQuery evaluation table ID.
"""
pass
@abc.abstractmethod
def predict(
self,
dataset: dataset.Dataset,
model: str,
model_parameters: Dict[str, Any],
prediction_parameters: Dict[str, Any],
) -> str:
"""Predict using a model and return the BigQuery table ID to its
prediction table.
Args:
dataset (dataset.Dataset): The dataset used for prediction.
model (str): Model to evaluate.
model_parameters (Dict[str, Any]): The model training parameters.
prediction_parameters (Dict[str, Any]): The prediction parameters.
Returns:
str: The BigQuery prediction table ID.
"""
pass