in aiplatform/src/main/java/aiplatform/CreateTrainingPipelineCustomTrainingManagedDatasetSample.java [57:142]
static void createTrainingPipelineCustomTrainingManagedDatasetSample(
String project,
String displayName,
String modelDisplayName,
String datasetId,
String annotationSchemaUri,
String trainingContainerSpecImageUri,
String modelContainerSpecImageUri,
String baseOutputUriPrefix)
throws IOException {
PipelineServiceSettings settings =
PipelineServiceSettings.newBuilder()
.setEndpoint("us-central1-aiplatform.googleapis.com:443")
.build();
String location = "us-central1";
// Initialize client that will be used to send requests. This client only needs to be created
// once, and can be reused for multiple requests. After completing all of your requests, call
// the "close" method on the client to safely clean up any remaining background resources.
try (PipelineServiceClient client = PipelineServiceClient.create(settings)) {
JsonArray jsonArgs = new JsonArray();
jsonArgs.add("--model-dir=$(AIP_MODEL_DIR)");
// training_task_inputs
JsonObject jsonTrainingContainerSpec = new JsonObject();
jsonTrainingContainerSpec.addProperty("imageUri", trainingContainerSpecImageUri);
// AIP_MODEL_DIR is set by the service according to baseOutputDirectory.
jsonTrainingContainerSpec.add("args", jsonArgs);
JsonObject jsonMachineSpec = new JsonObject();
jsonMachineSpec.addProperty("machineType", "n1-standard-8");
JsonObject jsonTrainingWorkerPoolSpec = new JsonObject();
jsonTrainingWorkerPoolSpec.addProperty("replicaCount", 1);
jsonTrainingWorkerPoolSpec.add("machineSpec", jsonMachineSpec);
jsonTrainingWorkerPoolSpec.add("containerSpec", jsonTrainingContainerSpec);
JsonArray jsonWorkerPoolSpecs = new JsonArray();
jsonWorkerPoolSpecs.add(jsonTrainingWorkerPoolSpec);
JsonObject jsonBaseOutputDirectory = new JsonObject();
jsonBaseOutputDirectory.addProperty("outputUriPrefix", baseOutputUriPrefix);
JsonObject jsonTrainingTaskInputs = new JsonObject();
jsonTrainingTaskInputs.add("workerPoolSpecs", jsonWorkerPoolSpecs);
jsonTrainingTaskInputs.add("baseOutputDirectory", jsonBaseOutputDirectory);
Value.Builder trainingTaskInputsBuilder = Value.newBuilder();
JsonFormat.parser().merge(jsonTrainingTaskInputs.toString(), trainingTaskInputsBuilder);
Value trainingTaskInputs = trainingTaskInputsBuilder.build();
// model_to_upload
ModelContainerSpec modelContainerSpec =
ModelContainerSpec.newBuilder().setImageUri(modelContainerSpecImageUri).build();
Model model =
Model.newBuilder()
.setDisplayName(modelDisplayName)
.setContainerSpec(modelContainerSpec)
.build();
GcsDestination gcsDestination =
GcsDestination.newBuilder().setOutputUriPrefix(baseOutputUriPrefix).build();
// input_data_config
InputDataConfig inputDataConfig =
InputDataConfig.newBuilder()
.setDatasetId(datasetId)
.setAnnotationSchemaUri(annotationSchemaUri)
.setGcsDestination(gcsDestination)
.build();
// training_task_definition
String customTaskDefinition =
"gs://google-cloud-aiplatform/schema/trainingjob/definition/custom_task_1.0.0.yaml";
TrainingPipeline trainingPipeline =
TrainingPipeline.newBuilder()
.setDisplayName(displayName)
.setInputDataConfig(inputDataConfig)
.setTrainingTaskDefinition(customTaskDefinition)
.setTrainingTaskInputs(trainingTaskInputs)
.setModelToUpload(model)
.build();
LocationName parent = LocationName.of(project, location);
TrainingPipeline response = client.createTrainingPipeline(parent, trainingPipeline);
System.out.format("response: %s\n", response);
System.out.format("Name: %s\n", response.getName());
}
}