python/pipelines/automl_tabular_pl_v2.yaml (8,127 lines of code) (raw):
# Copyright 2023 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# PIPELINE DEFINITION
# Name: automl-tabular
# Description: The AutoML Tabular pipeline v1.
# Inputs:
# additional_experiments: dict
# cv_trainer_worker_pool_specs_override: list
# data_source_bigquery_table_path: str [Default: '']
# data_source_csv_filenames: str [Default: '']
# dataflow_service_account: str [Default: '']
# dataflow_subnetwork: str [Default: '']
# dataflow_use_public_ips: bool [Default: True]
# disable_early_stopping: bool [Default: False]
# distill_batch_predict_machine_type: str [Default: 'n1-standard-16']
# distill_batch_predict_max_replica_count: int [Default: 25.0]
# distill_batch_predict_starting_replica_count: int [Default: 25.0]
# enable_probabilistic_inference: bool [Default: False]
# encryption_spec_key_name: str [Default: '']
# evaluation_batch_explain_machine_type: str [Default: 'n1-highmem-8']
# evaluation_batch_explain_max_replica_count: int [Default: 10.0]
# evaluation_batch_explain_starting_replica_count: int [Default: 10.0]
# evaluation_batch_predict_machine_type: str [Default: 'n1-highmem-8']
# evaluation_batch_predict_max_replica_count: int [Default: 20.0]
# evaluation_batch_predict_starting_replica_count: int [Default: 20.0]
# evaluation_dataflow_disk_size_gb: int [Default: 50.0]
# evaluation_dataflow_machine_type: str [Default: 'n1-standard-4']
# evaluation_dataflow_max_num_workers: int [Default: 100.0]
# evaluation_dataflow_starting_num_workers: int [Default: 10.0]
# export_additional_model_without_custom_ops: bool [Default: False]
# fast_testing: bool [Default: False]
# location: str
# model_description: str [Default: '']
# model_display_name: str [Default: '']
# optimization_objective: str
# optimization_objective_precision_value: float [Default: -1.0]
# optimization_objective_recall_value: float [Default: -1.0]
# predefined_split_key: str [Default: '']
# prediction_type: str
# project: str
# quantiles: list
# root_dir: str
# run_distillation: bool [Default: False]
# run_evaluation: bool [Default: False]
# stage_1_num_parallel_trials: int [Default: 35.0]
# stage_1_tuner_worker_pool_specs_override: list
# stage_1_tuning_result_artifact_uri: str [Default: '']
# stage_2_num_parallel_trials: int [Default: 35.0]
# stage_2_num_selected_trials: int [Default: 5.0]
# stats_and_example_gen_dataflow_disk_size_gb: int [Default: 40.0]
# stats_and_example_gen_dataflow_machine_type: str [Default: 'n1-standard-16']
# stats_and_example_gen_dataflow_max_num_workers: int [Default: 25.0]
# stratified_split_key: str [Default: '']
# study_spec_parameters_override: list
# target_column: str
# test_fraction: float [Default: -1.0]
# timestamp_split_key: str [Default: '']
# train_budget_milli_node_hours: float
# training_fraction: float [Default: -1.0]
# transform_dataflow_disk_size_gb: int [Default: 40.0]
# transform_dataflow_machine_type: str [Default: 'n1-standard-16']
# transform_dataflow_max_num_workers: int [Default: 25.0]
# transformations: str
# validation_fraction: float [Default: -1.0]
# vertex_dataset: system.Artifact
# weight_column: str [Default: '']
# Outputs:
# feature-attribution-2-feature_attributions: system.Metrics
# feature-attribution-3-feature_attributions: system.Metrics
# feature-attribution-feature_attributions: system.Metrics
# model-evaluation-2-evaluation_metrics: system.Metrics
# model-evaluation-3-evaluation_metrics: system.Metrics
# model-evaluation-evaluation_metrics: system.Metrics
components:
comp-automl-tabular-cv-trainer:
executorLabel: exec-automl-tabular-cv-trainer
inputDefinitions:
artifacts:
materialized_cv_splits:
artifactType:
schemaTitle: system.Artifact
schemaVersion: 0.0.1
metadata:
artifactType:
schemaTitle: system.Artifact
schemaVersion: 0.0.1
transform_output:
artifactType:
schemaTitle: system.Artifact
schemaVersion: 0.0.1
tuning_result_input:
artifactType:
schemaTitle: system.Artifact
schemaVersion: 0.0.1
parameters:
deadline_hours:
parameterType: NUMBER_DOUBLE
encryption_spec_key_name:
defaultValue: ''
isOptional: true
parameterType: STRING
location:
parameterType: STRING
num_parallel_trials:
parameterType: NUMBER_INTEGER
num_selected_features:
defaultValue: 0.0
isOptional: true
parameterType: NUMBER_INTEGER
num_selected_trials:
parameterType: NUMBER_INTEGER
project:
parameterType: STRING
root_dir:
parameterType: STRING
single_run_max_secs:
parameterType: NUMBER_INTEGER
worker_pool_specs_override_json:
defaultValue: []
isOptional: true
parameterType: LIST
outputDefinitions:
artifacts:
tuning_result_output:
artifactType:
schemaTitle: system.Artifact
schemaVersion: 0.0.1
parameters:
execution_metrics:
parameterType: STRUCT
gcp_resources:
parameterType: STRING
comp-automl-tabular-cv-trainer-2:
executorLabel: exec-automl-tabular-cv-trainer-2
inputDefinitions:
artifacts:
materialized_cv_splits:
artifactType:
schemaTitle: system.Artifact
schemaVersion: 0.0.1
metadata:
artifactType:
schemaTitle: system.Artifact
schemaVersion: 0.0.1
transform_output:
artifactType:
schemaTitle: system.Artifact
schemaVersion: 0.0.1
tuning_result_input:
artifactType:
schemaTitle: system.Artifact
schemaVersion: 0.0.1
parameters:
deadline_hours:
parameterType: NUMBER_DOUBLE
encryption_spec_key_name:
defaultValue: ''
isOptional: true
parameterType: STRING
location:
parameterType: STRING
num_parallel_trials:
parameterType: NUMBER_INTEGER
num_selected_features:
defaultValue: 0.0
isOptional: true
parameterType: NUMBER_INTEGER
num_selected_trials:
parameterType: NUMBER_INTEGER
project:
parameterType: STRING
root_dir:
parameterType: STRING
single_run_max_secs:
parameterType: NUMBER_INTEGER
worker_pool_specs_override_json:
defaultValue: []
isOptional: true
parameterType: LIST
outputDefinitions:
artifacts:
tuning_result_output:
artifactType:
schemaTitle: system.Artifact
schemaVersion: 0.0.1
parameters:
execution_metrics:
parameterType: STRUCT
gcp_resources:
parameterType: STRING
comp-automl-tabular-ensemble:
executorLabel: exec-automl-tabular-ensemble
inputDefinitions:
artifacts:
dataset_schema:
artifactType:
schemaTitle: system.Artifact
schemaVersion: 0.0.1
instance_baseline:
artifactType:
schemaTitle: system.Artifact
schemaVersion: 0.0.1
metadata:
artifactType:
schemaTitle: system.Artifact
schemaVersion: 0.0.1
transform_output:
artifactType:
schemaTitle: system.Artifact
schemaVersion: 0.0.1
tuning_result_input:
artifactType:
schemaTitle: system.Artifact
schemaVersion: 0.0.1
warmup_data:
artifactType:
schemaTitle: system.Dataset
schemaVersion: 0.0.1
isOptional: true
parameters:
encryption_spec_key_name:
defaultValue: ''
isOptional: true
parameterType: STRING
export_additional_model_without_custom_ops:
defaultValue: false
isOptional: true
parameterType: BOOLEAN
location:
parameterType: STRING
project:
parameterType: STRING
root_dir:
parameterType: STRING
outputDefinitions:
artifacts:
explanation_metadata_artifact:
artifactType:
schemaTitle: system.Artifact
schemaVersion: 0.0.1
model:
artifactType:
schemaTitle: system.Artifact
schemaVersion: 0.0.1
model_architecture:
artifactType:
schemaTitle: system.Artifact
schemaVersion: 0.0.1
model_without_custom_ops:
artifactType:
schemaTitle: system.Artifact
schemaVersion: 0.0.1
unmanaged_container_model:
artifactType:
schemaTitle: google.UnmanagedContainerModel
schemaVersion: 0.0.1
parameters:
explanation_metadata:
parameterType: STRUCT
explanation_parameters:
parameterType: STRUCT
gcp_resources:
parameterType: STRING
comp-automl-tabular-ensemble-2:
executorLabel: exec-automl-tabular-ensemble-2
inputDefinitions:
artifacts:
dataset_schema:
artifactType:
schemaTitle: system.Artifact
schemaVersion: 0.0.1
instance_baseline:
artifactType:
schemaTitle: system.Artifact
schemaVersion: 0.0.1
metadata:
artifactType:
schemaTitle: system.Artifact
schemaVersion: 0.0.1
transform_output:
artifactType:
schemaTitle: system.Artifact
schemaVersion: 0.0.1
tuning_result_input:
artifactType:
schemaTitle: system.Artifact
schemaVersion: 0.0.1
warmup_data:
artifactType:
schemaTitle: system.Dataset
schemaVersion: 0.0.1
isOptional: true
parameters:
encryption_spec_key_name:
defaultValue: ''
isOptional: true
parameterType: STRING
export_additional_model_without_custom_ops:
defaultValue: false
isOptional: true
parameterType: BOOLEAN
location:
parameterType: STRING
project:
parameterType: STRING
root_dir:
parameterType: STRING
outputDefinitions:
artifacts:
explanation_metadata_artifact:
artifactType:
schemaTitle: system.Artifact
schemaVersion: 0.0.1
model:
artifactType:
schemaTitle: system.Artifact
schemaVersion: 0.0.1
model_architecture:
artifactType:
schemaTitle: system.Artifact
schemaVersion: 0.0.1
model_without_custom_ops:
artifactType:
schemaTitle: system.Artifact
schemaVersion: 0.0.1
unmanaged_container_model:
artifactType:
schemaTitle: google.UnmanagedContainerModel
schemaVersion: 0.0.1
parameters:
explanation_metadata:
parameterType: STRUCT
explanation_parameters:
parameterType: STRUCT
gcp_resources:
parameterType: STRING
comp-automl-tabular-ensemble-3:
executorLabel: exec-automl-tabular-ensemble-3
inputDefinitions:
artifacts:
dataset_schema:
artifactType:
schemaTitle: system.Artifact
schemaVersion: 0.0.1
instance_baseline:
artifactType:
schemaTitle: system.Artifact
schemaVersion: 0.0.1
metadata:
artifactType:
schemaTitle: system.Artifact
schemaVersion: 0.0.1
transform_output:
artifactType:
schemaTitle: system.Artifact
schemaVersion: 0.0.1
tuning_result_input:
artifactType:
schemaTitle: system.Artifact
schemaVersion: 0.0.1
warmup_data:
artifactType:
schemaTitle: system.Dataset
schemaVersion: 0.0.1
isOptional: true
parameters:
encryption_spec_key_name:
defaultValue: ''
isOptional: true
parameterType: STRING
export_additional_model_without_custom_ops:
defaultValue: false
isOptional: true
parameterType: BOOLEAN
location:
parameterType: STRING
project:
parameterType: STRING
root_dir:
parameterType: STRING
outputDefinitions:
artifacts:
explanation_metadata_artifact:
artifactType:
schemaTitle: system.Artifact
schemaVersion: 0.0.1
model:
artifactType:
schemaTitle: system.Artifact
schemaVersion: 0.0.1
model_architecture:
artifactType:
schemaTitle: system.Artifact
schemaVersion: 0.0.1
model_without_custom_ops:
artifactType:
schemaTitle: system.Artifact
schemaVersion: 0.0.1
unmanaged_container_model:
artifactType:
schemaTitle: google.UnmanagedContainerModel
schemaVersion: 0.0.1
parameters:
explanation_metadata:
parameterType: STRUCT
explanation_parameters:
parameterType: STRUCT
gcp_resources:
parameterType: STRING
comp-automl-tabular-finalizer:
executorLabel: exec-automl-tabular-finalizer
inputDefinitions:
parameters:
encryption_spec_key_name:
defaultValue: ''
isOptional: true
parameterType: STRING
location:
parameterType: STRING
project:
parameterType: STRING
root_dir:
parameterType: STRING
outputDefinitions:
parameters:
gcp_resources:
parameterType: STRING
comp-automl-tabular-infra-validator:
executorLabel: exec-automl-tabular-infra-validator
inputDefinitions:
artifacts:
unmanaged_container_model:
artifactType:
schemaTitle: google.UnmanagedContainerModel
schemaVersion: 0.0.1
comp-automl-tabular-infra-validator-2:
executorLabel: exec-automl-tabular-infra-validator-2
inputDefinitions:
artifacts:
unmanaged_container_model:
artifactType:
schemaTitle: google.UnmanagedContainerModel
schemaVersion: 0.0.1
comp-automl-tabular-infra-validator-3:
executorLabel: exec-automl-tabular-infra-validator-3
inputDefinitions:
artifacts:
unmanaged_container_model:
artifactType:
schemaTitle: google.UnmanagedContainerModel
schemaVersion: 0.0.1
comp-automl-tabular-stage-1-tuner:
executorLabel: exec-automl-tabular-stage-1-tuner
inputDefinitions:
artifacts:
feature_ranking:
artifactType:
schemaTitle: system.Artifact
schemaVersion: 0.0.1
isOptional: true
materialized_eval_split:
artifactType:
schemaTitle: system.Artifact
schemaVersion: 0.0.1
materialized_train_split:
artifactType:
schemaTitle: system.Artifact
schemaVersion: 0.0.1
metadata:
artifactType:
schemaTitle: system.Artifact
schemaVersion: 0.0.1
transform_output:
artifactType:
schemaTitle: system.Artifact
schemaVersion: 0.0.1
parameters:
deadline_hours:
parameterType: NUMBER_DOUBLE
disable_early_stopping:
defaultValue: false
isOptional: true
parameterType: BOOLEAN
encryption_spec_key_name:
defaultValue: ''
isOptional: true
parameterType: STRING
location:
parameterType: STRING
num_parallel_trials:
parameterType: NUMBER_INTEGER
num_selected_features:
defaultValue: 0.0
isOptional: true
parameterType: NUMBER_INTEGER
num_selected_trials:
parameterType: NUMBER_INTEGER
project:
parameterType: STRING
reduce_search_space_mode:
defaultValue: regular
isOptional: true
parameterType: STRING
root_dir:
parameterType: STRING
run_distillation:
defaultValue: false
isOptional: true
parameterType: BOOLEAN
single_run_max_secs:
parameterType: NUMBER_INTEGER
study_spec_parameters_override:
defaultValue: []
isOptional: true
parameterType: LIST
tune_feature_selection_rate:
defaultValue: false
isOptional: true
parameterType: BOOLEAN
worker_pool_specs_override_json:
defaultValue: []
isOptional: true
parameterType: LIST
outputDefinitions:
artifacts:
tuning_result_output:
artifactType:
schemaTitle: system.Artifact
schemaVersion: 0.0.1
parameters:
execution_metrics:
parameterType: STRUCT
gcp_resources:
parameterType: STRING
comp-automl-tabular-stage-1-tuner-2:
executorLabel: exec-automl-tabular-stage-1-tuner-2
inputDefinitions:
artifacts:
feature_ranking:
artifactType:
schemaTitle: system.Artifact
schemaVersion: 0.0.1
isOptional: true
materialized_eval_split:
artifactType:
schemaTitle: system.Artifact
schemaVersion: 0.0.1
materialized_train_split:
artifactType:
schemaTitle: system.Artifact
schemaVersion: 0.0.1
metadata:
artifactType:
schemaTitle: system.Artifact
schemaVersion: 0.0.1
transform_output:
artifactType:
schemaTitle: system.Artifact
schemaVersion: 0.0.1
parameters:
deadline_hours:
parameterType: NUMBER_DOUBLE
disable_early_stopping:
defaultValue: false
isOptional: true
parameterType: BOOLEAN
encryption_spec_key_name:
defaultValue: ''
isOptional: true
parameterType: STRING
location:
parameterType: STRING
num_parallel_trials:
parameterType: NUMBER_INTEGER
num_selected_features:
defaultValue: 0.0
isOptional: true
parameterType: NUMBER_INTEGER
num_selected_trials:
parameterType: NUMBER_INTEGER
project:
parameterType: STRING
reduce_search_space_mode:
defaultValue: regular
isOptional: true
parameterType: STRING
root_dir:
parameterType: STRING
run_distillation:
defaultValue: false
isOptional: true
parameterType: BOOLEAN
single_run_max_secs:
parameterType: NUMBER_INTEGER
study_spec_parameters_override:
defaultValue: []
isOptional: true
parameterType: LIST
tune_feature_selection_rate:
defaultValue: false
isOptional: true
parameterType: BOOLEAN
worker_pool_specs_override_json:
defaultValue: []
isOptional: true
parameterType: LIST
outputDefinitions:
artifacts:
tuning_result_output:
artifactType:
schemaTitle: system.Artifact
schemaVersion: 0.0.1
parameters:
execution_metrics:
parameterType: STRUCT
gcp_resources:
parameterType: STRING
comp-automl-tabular-transform:
executorLabel: exec-automl-tabular-transform
inputDefinitions:
artifacts:
dataset_schema:
artifactType:
schemaTitle: system.Artifact
schemaVersion: 0.0.1
eval_split:
artifactType:
schemaTitle: system.Dataset
schemaVersion: 0.0.1
metadata:
artifactType:
schemaTitle: system.Artifact
schemaVersion: 0.0.1
test_split:
artifactType:
schemaTitle: system.Dataset
schemaVersion: 0.0.1
train_split:
artifactType:
schemaTitle: system.Dataset
schemaVersion: 0.0.1
parameters:
dataflow_disk_size_gb:
defaultValue: 40.0
isOptional: true
parameterType: NUMBER_INTEGER
dataflow_machine_type:
defaultValue: n1-standard-16
isOptional: true
parameterType: STRING
dataflow_max_num_workers:
defaultValue: 25.0
isOptional: true
parameterType: NUMBER_INTEGER
dataflow_service_account:
defaultValue: ''
isOptional: true
parameterType: STRING
dataflow_subnetwork:
defaultValue: ''
isOptional: true
parameterType: STRING
dataflow_use_public_ips:
defaultValue: true
isOptional: true
parameterType: BOOLEAN
encryption_spec_key_name:
defaultValue: ''
isOptional: true
parameterType: STRING
location:
parameterType: STRING
project:
parameterType: STRING
root_dir:
parameterType: STRING
outputDefinitions:
artifacts:
materialized_eval_split:
artifactType:
schemaTitle: system.Artifact
schemaVersion: 0.0.1
materialized_test_split:
artifactType:
schemaTitle: system.Artifact
schemaVersion: 0.0.1
materialized_train_split:
artifactType:
schemaTitle: system.Artifact
schemaVersion: 0.0.1
training_schema_uri:
artifactType:
schemaTitle: system.Artifact
schemaVersion: 0.0.1
transform_output:
artifactType:
schemaTitle: system.Artifact
schemaVersion: 0.0.1
parameters:
gcp_resources:
parameterType: STRING
comp-automl-tabular-transform-2:
executorLabel: exec-automl-tabular-transform-2
inputDefinitions:
artifacts:
dataset_schema:
artifactType:
schemaTitle: system.Artifact
schemaVersion: 0.0.1
eval_split:
artifactType:
schemaTitle: system.Dataset
schemaVersion: 0.0.1
metadata:
artifactType:
schemaTitle: system.Artifact
schemaVersion: 0.0.1
test_split:
artifactType:
schemaTitle: system.Dataset
schemaVersion: 0.0.1
train_split:
artifactType:
schemaTitle: system.Dataset
schemaVersion: 0.0.1
parameters:
dataflow_disk_size_gb:
defaultValue: 40.0
isOptional: true
parameterType: NUMBER_INTEGER
dataflow_machine_type:
defaultValue: n1-standard-16
isOptional: true
parameterType: STRING
dataflow_max_num_workers:
defaultValue: 25.0
isOptional: true
parameterType: NUMBER_INTEGER
dataflow_service_account:
defaultValue: ''
isOptional: true
parameterType: STRING
dataflow_subnetwork:
defaultValue: ''
isOptional: true
parameterType: STRING
dataflow_use_public_ips:
defaultValue: true
isOptional: true
parameterType: BOOLEAN
encryption_spec_key_name:
defaultValue: ''
isOptional: true
parameterType: STRING
location:
parameterType: STRING
project:
parameterType: STRING
root_dir:
parameterType: STRING
outputDefinitions:
artifacts:
materialized_eval_split:
artifactType:
schemaTitle: system.Artifact
schemaVersion: 0.0.1
materialized_test_split:
artifactType:
schemaTitle: system.Artifact
schemaVersion: 0.0.1
materialized_train_split:
artifactType:
schemaTitle: system.Artifact
schemaVersion: 0.0.1
training_schema_uri:
artifactType:
schemaTitle: system.Artifact
schemaVersion: 0.0.1
transform_output:
artifactType:
schemaTitle: system.Artifact
schemaVersion: 0.0.1
parameters:
gcp_resources:
parameterType: STRING
comp-bool-identity:
executorLabel: exec-bool-identity
inputDefinitions:
parameters:
value:
parameterType: BOOLEAN
outputDefinitions:
parameters:
Output:
parameterType: STRING
comp-bool-identity-2:
executorLabel: exec-bool-identity-2
inputDefinitions:
parameters:
value:
parameterType: BOOLEAN
outputDefinitions:
parameters:
Output:
parameterType: STRING
comp-bool-identity-3:
executorLabel: exec-bool-identity-3
inputDefinitions:
parameters:
value:
parameterType: BOOLEAN
outputDefinitions:
parameters:
Output:
parameterType: STRING
comp-calculate-training-parameters:
executorLabel: exec-calculate-training-parameters
inputDefinitions:
parameters:
fast_testing:
defaultValue: false
isOptional: true
parameterType: BOOLEAN
is_skip_architecture_search:
defaultValue: false
isOptional: true
parameterType: BOOLEAN
run_distillation:
parameterType: BOOLEAN
stage_1_num_parallel_trials:
parameterType: NUMBER_INTEGER
stage_2_num_parallel_trials:
parameterType: NUMBER_INTEGER
train_budget_milli_node_hours:
parameterType: NUMBER_DOUBLE
outputDefinitions:
parameters:
distill_stage_1_deadline_hours:
parameterType: NUMBER_DOUBLE
reduce_search_space_mode:
parameterType: STRING
stage_1_deadline_hours:
parameterType: NUMBER_DOUBLE
stage_1_num_selected_trials:
parameterType: NUMBER_INTEGER
stage_1_single_run_max_secs:
parameterType: NUMBER_INTEGER
stage_2_deadline_hours:
parameterType: NUMBER_DOUBLE
stage_2_single_run_max_secs:
parameterType: NUMBER_INTEGER
comp-calculate-training-parameters-2:
executorLabel: exec-calculate-training-parameters-2
inputDefinitions:
parameters:
fast_testing:
defaultValue: false
isOptional: true
parameterType: BOOLEAN
is_skip_architecture_search:
defaultValue: false
isOptional: true
parameterType: BOOLEAN
run_distillation:
parameterType: BOOLEAN
stage_1_num_parallel_trials:
parameterType: NUMBER_INTEGER
stage_2_num_parallel_trials:
parameterType: NUMBER_INTEGER
train_budget_milli_node_hours:
parameterType: NUMBER_DOUBLE
outputDefinitions:
parameters:
distill_stage_1_deadline_hours:
parameterType: NUMBER_DOUBLE
reduce_search_space_mode:
parameterType: STRING
stage_1_deadline_hours:
parameterType: NUMBER_DOUBLE
stage_1_num_selected_trials:
parameterType: NUMBER_INTEGER
stage_1_single_run_max_secs:
parameterType: NUMBER_INTEGER
stage_2_deadline_hours:
parameterType: NUMBER_DOUBLE
stage_2_single_run_max_secs:
parameterType: NUMBER_INTEGER
comp-condition-2:
dag:
outputs:
artifacts:
feature-attribution-feature_attributions:
artifactSelectors:
- outputArtifactKey: feature-attribution-feature_attributions
producerSubtask: condition-3
model-evaluation-evaluation_metrics:
artifactSelectors:
- outputArtifactKey: model-evaluation-evaluation_metrics
producerSubtask: condition-3
tasks:
automl-tabular-cv-trainer:
cachingOptions:
enableCache: true
componentRef:
name: comp-automl-tabular-cv-trainer
dependentTasks:
- calculate-training-parameters
- importer
inputs:
artifacts:
materialized_cv_splits:
componentInputArtifact: pipelinechannel--merge-materialized-splits-splits
metadata:
componentInputArtifact: pipelinechannel--tabular-stats-and-example-gen-metadata
transform_output:
componentInputArtifact: pipelinechannel--automl-tabular-transform-transform_output
tuning_result_input:
taskOutputArtifact:
outputArtifactKey: artifact
producerTask: importer
parameters:
deadline_hours:
taskOutputParameter:
outputParameterKey: stage_2_deadline_hours
producerTask: calculate-training-parameters
encryption_spec_key_name:
componentInputParameter: pipelinechannel--encryption_spec_key_name
location:
componentInputParameter: pipelinechannel--location
num_parallel_trials:
componentInputParameter: pipelinechannel--stage_2_num_parallel_trials
num_selected_trials:
componentInputParameter: pipelinechannel--stage_2_num_selected_trials
project:
componentInputParameter: pipelinechannel--project
root_dir:
componentInputParameter: pipelinechannel--root_dir
single_run_max_secs:
taskOutputParameter:
outputParameterKey: stage_2_single_run_max_secs
producerTask: calculate-training-parameters
worker_pool_specs_override_json:
componentInputParameter: pipelinechannel--cv_trainer_worker_pool_specs_override
taskInfo:
name: automl-tabular-cv-trainer
automl-tabular-ensemble:
cachingOptions:
enableCache: true
componentRef:
name: comp-automl-tabular-ensemble
dependentTasks:
- automl-tabular-cv-trainer
inputs:
artifacts:
dataset_schema:
componentInputArtifact: pipelinechannel--tabular-stats-and-example-gen-dataset_schema
instance_baseline:
componentInputArtifact: pipelinechannel--tabular-stats-and-example-gen-instance_baseline
metadata:
componentInputArtifact: pipelinechannel--tabular-stats-and-example-gen-metadata
transform_output:
componentInputArtifact: pipelinechannel--automl-tabular-transform-transform_output
tuning_result_input:
taskOutputArtifact:
outputArtifactKey: tuning_result_output
producerTask: automl-tabular-cv-trainer
warmup_data:
componentInputArtifact: pipelinechannel--tabular-stats-and-example-gen-eval_split
parameters:
encryption_spec_key_name:
componentInputParameter: pipelinechannel--encryption_spec_key_name
export_additional_model_without_custom_ops:
componentInputParameter: pipelinechannel--export_additional_model_without_custom_ops
location:
componentInputParameter: pipelinechannel--location
project:
componentInputParameter: pipelinechannel--project
root_dir:
componentInputParameter: pipelinechannel--root_dir
taskInfo:
name: automl-tabular-ensemble
automl-tabular-infra-validator:
cachingOptions:
enableCache: true
componentRef:
name: comp-automl-tabular-infra-validator
dependentTasks:
- automl-tabular-ensemble
inputs:
artifacts:
unmanaged_container_model:
taskOutputArtifact:
outputArtifactKey: unmanaged_container_model
producerTask: automl-tabular-ensemble
taskInfo:
name: automl-tabular-infra-validator
bool-identity:
cachingOptions:
enableCache: true
componentRef:
name: comp-bool-identity
inputs:
parameters:
value:
componentInputParameter: pipelinechannel--run_evaluation
taskInfo:
name: bool-identity
calculate-training-parameters:
cachingOptions:
enableCache: true
componentRef:
name: comp-calculate-training-parameters
inputs:
parameters:
fast_testing:
componentInputParameter: pipelinechannel--fast_testing
is_skip_architecture_search:
runtimeValue:
constant: 1.0
run_distillation:
componentInputParameter: pipelinechannel--run_distillation
stage_1_num_parallel_trials:
componentInputParameter: pipelinechannel--stage_1_num_parallel_trials
stage_2_num_parallel_trials:
componentInputParameter: pipelinechannel--stage_2_num_parallel_trials
train_budget_milli_node_hours:
componentInputParameter: pipelinechannel--train_budget_milli_node_hours
taskInfo:
name: calculate-training-parameters
condition-3:
componentRef:
name: comp-condition-3
dependentTasks:
- automl-tabular-ensemble
- bool-identity
- model-upload
inputs:
artifacts:
pipelinechannel--automl-tabular-ensemble-explanation_metadata_artifact:
taskOutputArtifact:
outputArtifactKey: explanation_metadata_artifact
producerTask: automl-tabular-ensemble
pipelinechannel--automl-tabular-ensemble-unmanaged_container_model:
taskOutputArtifact:
outputArtifactKey: unmanaged_container_model
producerTask: automl-tabular-ensemble
pipelinechannel--model-upload-model:
taskOutputArtifact:
outputArtifactKey: model
producerTask: model-upload
parameters:
pipelinechannel--automl-tabular-ensemble-explanation_parameters:
taskOutputParameter:
outputParameterKey: explanation_parameters
producerTask: automl-tabular-ensemble
pipelinechannel--bool-identity-Output:
taskOutputParameter:
outputParameterKey: Output
producerTask: bool-identity
pipelinechannel--dataflow_service_account:
componentInputParameter: pipelinechannel--dataflow_service_account
pipelinechannel--dataflow_subnetwork:
componentInputParameter: pipelinechannel--dataflow_subnetwork
pipelinechannel--dataflow_use_public_ips:
componentInputParameter: pipelinechannel--dataflow_use_public_ips
pipelinechannel--encryption_spec_key_name:
componentInputParameter: pipelinechannel--encryption_spec_key_name
pipelinechannel--evaluation_batch_explain_machine_type:
componentInputParameter: pipelinechannel--evaluation_batch_explain_machine_type
pipelinechannel--evaluation_batch_explain_max_replica_count:
componentInputParameter: pipelinechannel--evaluation_batch_explain_max_replica_count
pipelinechannel--evaluation_batch_explain_starting_replica_count:
componentInputParameter: pipelinechannel--evaluation_batch_explain_starting_replica_count
pipelinechannel--evaluation_batch_predict_machine_type:
componentInputParameter: pipelinechannel--evaluation_batch_predict_machine_type
pipelinechannel--evaluation_batch_predict_max_replica_count:
componentInputParameter: pipelinechannel--evaluation_batch_predict_max_replica_count
pipelinechannel--evaluation_batch_predict_starting_replica_count:
componentInputParameter: pipelinechannel--evaluation_batch_predict_starting_replica_count
pipelinechannel--evaluation_dataflow_disk_size_gb:
componentInputParameter: pipelinechannel--evaluation_dataflow_disk_size_gb
pipelinechannel--evaluation_dataflow_machine_type:
componentInputParameter: pipelinechannel--evaluation_dataflow_machine_type
pipelinechannel--evaluation_dataflow_max_num_workers:
componentInputParameter: pipelinechannel--evaluation_dataflow_max_num_workers
pipelinechannel--evaluation_dataflow_starting_num_workers:
componentInputParameter: pipelinechannel--evaluation_dataflow_starting_num_workers
pipelinechannel--location:
componentInputParameter: pipelinechannel--location
pipelinechannel--prediction_type:
componentInputParameter: pipelinechannel--prediction_type
pipelinechannel--project:
componentInputParameter: pipelinechannel--project
pipelinechannel--root_dir:
componentInputParameter: pipelinechannel--root_dir
pipelinechannel--string-not-empty-Output:
componentInputParameter: pipelinechannel--string-not-empty-Output
pipelinechannel--tabular-stats-and-example-gen-downsampled_test_split_json:
componentInputParameter: pipelinechannel--tabular-stats-and-example-gen-downsampled_test_split_json
pipelinechannel--tabular-stats-and-example-gen-test_split_json:
componentInputParameter: pipelinechannel--tabular-stats-and-example-gen-test_split_json
pipelinechannel--target_column:
componentInputParameter: pipelinechannel--target_column
taskInfo:
name: is-evaluation
triggerPolicy:
condition: inputs.parameter_values['pipelinechannel--bool-identity-Output']
== 'true'
importer:
cachingOptions:
enableCache: true
componentRef:
name: comp-importer
inputs:
parameters:
uri:
componentInputParameter: pipelinechannel--stage_1_tuning_result_artifact_uri
taskInfo:
name: importer
model-upload:
cachingOptions:
enableCache: true
componentRef:
name: comp-model-upload
dependentTasks:
- automl-tabular-ensemble
inputs:
artifacts:
explanation_metadata_artifact:
taskOutputArtifact:
outputArtifactKey: explanation_metadata_artifact
producerTask: automl-tabular-ensemble
unmanaged_container_model:
taskOutputArtifact:
outputArtifactKey: unmanaged_container_model
producerTask: automl-tabular-ensemble
parameters:
description:
componentInputParameter: pipelinechannel--model_description
display_name:
componentInputParameter: pipelinechannel--set-optional-inputs-model_display_name
encryption_spec_key_name:
componentInputParameter: pipelinechannel--encryption_spec_key_name
explanation_parameters:
taskOutputParameter:
outputParameterKey: explanation_parameters
producerTask: automl-tabular-ensemble
location:
componentInputParameter: pipelinechannel--location
project:
componentInputParameter: pipelinechannel--project
taskInfo:
name: model-upload
inputDefinitions:
artifacts:
pipelinechannel--automl-tabular-transform-transform_output:
artifactType:
schemaTitle: system.Artifact
schemaVersion: 0.0.1
pipelinechannel--merge-materialized-splits-splits:
artifactType:
schemaTitle: system.Artifact
schemaVersion: 0.0.1
pipelinechannel--tabular-stats-and-example-gen-dataset_schema:
artifactType:
schemaTitle: system.Artifact
schemaVersion: 0.0.1
pipelinechannel--tabular-stats-and-example-gen-eval_split:
artifactType:
schemaTitle: system.Dataset
schemaVersion: 0.0.1
pipelinechannel--tabular-stats-and-example-gen-instance_baseline:
artifactType:
schemaTitle: system.Artifact
schemaVersion: 0.0.1
pipelinechannel--tabular-stats-and-example-gen-metadata:
artifactType:
schemaTitle: system.Artifact
schemaVersion: 0.0.1
parameters:
pipelinechannel--cv_trainer_worker_pool_specs_override:
parameterType: LIST
pipelinechannel--dataflow_service_account:
parameterType: STRING
pipelinechannel--dataflow_subnetwork:
parameterType: STRING
pipelinechannel--dataflow_use_public_ips:
parameterType: BOOLEAN
pipelinechannel--encryption_spec_key_name:
parameterType: STRING
pipelinechannel--evaluation_batch_explain_machine_type:
parameterType: STRING
pipelinechannel--evaluation_batch_explain_max_replica_count:
parameterType: NUMBER_INTEGER
pipelinechannel--evaluation_batch_explain_starting_replica_count:
parameterType: NUMBER_INTEGER
pipelinechannel--evaluation_batch_predict_machine_type:
parameterType: STRING
pipelinechannel--evaluation_batch_predict_max_replica_count:
parameterType: NUMBER_INTEGER
pipelinechannel--evaluation_batch_predict_starting_replica_count:
parameterType: NUMBER_INTEGER
pipelinechannel--evaluation_dataflow_disk_size_gb:
parameterType: NUMBER_INTEGER
pipelinechannel--evaluation_dataflow_machine_type:
parameterType: STRING
pipelinechannel--evaluation_dataflow_max_num_workers:
parameterType: NUMBER_INTEGER
pipelinechannel--evaluation_dataflow_starting_num_workers:
parameterType: NUMBER_INTEGER
pipelinechannel--export_additional_model_without_custom_ops:
parameterType: BOOLEAN
pipelinechannel--fast_testing:
parameterType: BOOLEAN
pipelinechannel--location:
parameterType: STRING
pipelinechannel--model_description:
parameterType: STRING
pipelinechannel--prediction_type:
parameterType: STRING
pipelinechannel--project:
parameterType: STRING
pipelinechannel--root_dir:
parameterType: STRING
pipelinechannel--run_distillation:
parameterType: BOOLEAN
pipelinechannel--run_evaluation:
parameterType: BOOLEAN
pipelinechannel--set-optional-inputs-model_display_name:
parameterType: STRING
pipelinechannel--stage_1_num_parallel_trials:
parameterType: NUMBER_INTEGER
pipelinechannel--stage_1_tuning_result_artifact_uri:
parameterType: STRING
pipelinechannel--stage_2_num_parallel_trials:
parameterType: NUMBER_INTEGER
pipelinechannel--stage_2_num_selected_trials:
parameterType: NUMBER_INTEGER
pipelinechannel--string-not-empty-Output:
parameterType: STRING
pipelinechannel--tabular-stats-and-example-gen-downsampled_test_split_json:
parameterType: LIST
pipelinechannel--tabular-stats-and-example-gen-test_split_json:
parameterType: LIST
pipelinechannel--target_column:
parameterType: STRING
pipelinechannel--train_budget_milli_node_hours:
parameterType: NUMBER_DOUBLE
outputDefinitions:
artifacts:
feature-attribution-feature_attributions:
artifactType:
schemaTitle: system.Metrics
schemaVersion: 0.0.1
model-evaluation-evaluation_metrics:
artifactType:
schemaTitle: system.Metrics
schemaVersion: 0.0.1
comp-condition-3:
dag:
outputs:
artifacts:
feature-attribution-feature_attributions:
artifactSelectors:
- outputArtifactKey: feature_attributions
producerSubtask: feature-attribution
model-evaluation-evaluation_metrics:
artifactSelectors:
- outputArtifactKey: evaluation_metrics
producerSubtask: model-evaluation
tasks:
feature-attribution:
cachingOptions:
enableCache: true
componentRef:
name: comp-feature-attribution
dependentTasks:
- model-batch-explanation
inputs:
artifacts:
predictions_gcs_source:
taskOutputArtifact:
outputArtifactKey: gcs_output_directory
producerTask: model-batch-explanation
parameters:
dataflow_disk_size:
componentInputParameter: pipelinechannel--evaluation_dataflow_disk_size_gb
dataflow_machine_type:
componentInputParameter: pipelinechannel--evaluation_dataflow_machine_type
dataflow_max_workers_num:
componentInputParameter: pipelinechannel--evaluation_dataflow_max_num_workers
dataflow_service_account:
componentInputParameter: pipelinechannel--dataflow_service_account
dataflow_subnetwork:
componentInputParameter: pipelinechannel--dataflow_subnetwork
dataflow_use_public_ips:
componentInputParameter: pipelinechannel--dataflow_use_public_ips
dataflow_workers_num:
componentInputParameter: pipelinechannel--evaluation_dataflow_starting_num_workers
encryption_spec_key_name:
componentInputParameter: pipelinechannel--encryption_spec_key_name
location:
componentInputParameter: pipelinechannel--location
predictions_format:
runtimeValue:
constant: jsonl
project:
componentInputParameter: pipelinechannel--project
root_dir:
componentInputParameter: pipelinechannel--root_dir
taskInfo:
name: feature-attribution
model-batch-explanation:
cachingOptions:
enableCache: true
componentRef:
name: comp-model-batch-explanation
inputs:
artifacts:
explanation_metadata_artifact:
componentInputArtifact: pipelinechannel--automl-tabular-ensemble-explanation_metadata_artifact
unmanaged_container_model:
componentInputArtifact: pipelinechannel--automl-tabular-ensemble-unmanaged_container_model
parameters:
encryption_spec_key_name:
componentInputParameter: pipelinechannel--encryption_spec_key_name
explanation_parameters:
componentInputParameter: pipelinechannel--automl-tabular-ensemble-explanation_parameters
gcs_destination_output_uri_prefix:
componentInputParameter: pipelinechannel--root_dir
gcs_source_uris:
componentInputParameter: pipelinechannel--tabular-stats-and-example-gen-downsampled_test_split_json
generate_explanation:
runtimeValue:
constant: 1.0
instances_format:
runtimeValue:
constant: tf-record
job_display_name:
runtimeValue:
constant: batch-explain-evaluation-{{$.pipeline_job_uuid}}-{{$.pipeline_task_uuid}}
location:
componentInputParameter: pipelinechannel--location
machine_type:
componentInputParameter: pipelinechannel--evaluation_batch_explain_machine_type
max_replica_count:
componentInputParameter: pipelinechannel--evaluation_batch_explain_max_replica_count
predictions_format:
runtimeValue:
constant: jsonl
project:
componentInputParameter: pipelinechannel--project
starting_replica_count:
componentInputParameter: pipelinechannel--evaluation_batch_explain_starting_replica_count
taskInfo:
name: model-batch-explanation
model-batch-predict:
cachingOptions:
enableCache: true
componentRef:
name: comp-model-batch-predict
inputs:
artifacts:
unmanaged_container_model:
componentInputArtifact: pipelinechannel--automl-tabular-ensemble-unmanaged_container_model
parameters:
encryption_spec_key_name:
componentInputParameter: pipelinechannel--encryption_spec_key_name
gcs_destination_output_uri_prefix:
componentInputParameter: pipelinechannel--root_dir
gcs_source_uris:
componentInputParameter: pipelinechannel--tabular-stats-and-example-gen-test_split_json
instances_format:
runtimeValue:
constant: tf-record
job_display_name:
runtimeValue:
constant: batch-predict-evaluation-{{$.pipeline_job_uuid}}-{{$.pipeline_task_uuid}}
location:
componentInputParameter: pipelinechannel--location
machine_type:
componentInputParameter: pipelinechannel--evaluation_batch_predict_machine_type
max_replica_count:
componentInputParameter: pipelinechannel--evaluation_batch_predict_max_replica_count
predictions_format:
runtimeValue:
constant: jsonl
project:
componentInputParameter: pipelinechannel--project
starting_replica_count:
componentInputParameter: pipelinechannel--evaluation_batch_predict_starting_replica_count
taskInfo:
name: model-batch-predict
model-evaluation:
cachingOptions:
enableCache: true
componentRef:
name: comp-model-evaluation
dependentTasks:
- model-batch-predict
inputs:
artifacts:
batch_prediction_job:
taskOutputArtifact:
outputArtifactKey: batchpredictionjob
producerTask: model-batch-predict
parameters:
dataflow_disk_size:
componentInputParameter: pipelinechannel--evaluation_dataflow_disk_size_gb
dataflow_machine_type:
componentInputParameter: pipelinechannel--evaluation_dataflow_machine_type
dataflow_max_workers_num:
componentInputParameter: pipelinechannel--evaluation_dataflow_max_num_workers
dataflow_service_account:
componentInputParameter: pipelinechannel--dataflow_service_account
dataflow_subnetwork:
componentInputParameter: pipelinechannel--dataflow_subnetwork
dataflow_use_public_ips:
componentInputParameter: pipelinechannel--dataflow_use_public_ips
dataflow_workers_num:
componentInputParameter: pipelinechannel--evaluation_dataflow_starting_num_workers
encryption_spec_key_name:
componentInputParameter: pipelinechannel--encryption_spec_key_name
ground_truth_column:
componentInputParameter: pipelinechannel--target_column
ground_truth_format:
runtimeValue:
constant: jsonl
location:
componentInputParameter: pipelinechannel--location
prediction_label_column:
runtimeValue:
constant: ''
prediction_score_column:
runtimeValue:
constant: ''
predictions_format:
runtimeValue:
constant: jsonl
problem_type:
componentInputParameter: pipelinechannel--prediction_type
project:
componentInputParameter: pipelinechannel--project
root_dir:
componentInputParameter: pipelinechannel--root_dir
taskInfo:
name: model-evaluation
model-evaluation-import:
cachingOptions:
enableCache: true
componentRef:
name: comp-model-evaluation-import
dependentTasks:
- feature-attribution
- model-evaluation
inputs:
artifacts:
feature_attributions:
taskOutputArtifact:
outputArtifactKey: feature_attributions
producerTask: feature-attribution
metrics:
taskOutputArtifact:
outputArtifactKey: evaluation_metrics
producerTask: model-evaluation
model:
componentInputArtifact: pipelinechannel--model-upload-model
parameters:
dataset_paths:
componentInputParameter: pipelinechannel--tabular-stats-and-example-gen-test_split_json
dataset_type:
runtimeValue:
constant: tf-record
display_name:
runtimeValue:
constant: AutoML Tabular
problem_type:
componentInputParameter: pipelinechannel--prediction_type
taskInfo:
name: model-evaluation-import
inputDefinitions:
artifacts:
pipelinechannel--automl-tabular-ensemble-explanation_metadata_artifact:
artifactType:
schemaTitle: system.Artifact
schemaVersion: 0.0.1
pipelinechannel--automl-tabular-ensemble-unmanaged_container_model:
artifactType:
schemaTitle: google.UnmanagedContainerModel
schemaVersion: 0.0.1
pipelinechannel--model-upload-model:
artifactType:
schemaTitle: google.VertexModel
schemaVersion: 0.0.1
parameters:
pipelinechannel--automl-tabular-ensemble-explanation_parameters:
parameterType: STRUCT
pipelinechannel--bool-identity-Output:
parameterType: STRING
pipelinechannel--dataflow_service_account:
parameterType: STRING
pipelinechannel--dataflow_subnetwork:
parameterType: STRING
pipelinechannel--dataflow_use_public_ips:
parameterType: BOOLEAN
pipelinechannel--encryption_spec_key_name:
parameterType: STRING
pipelinechannel--evaluation_batch_explain_machine_type:
parameterType: STRING
pipelinechannel--evaluation_batch_explain_max_replica_count:
parameterType: NUMBER_INTEGER
pipelinechannel--evaluation_batch_explain_starting_replica_count:
parameterType: NUMBER_INTEGER
pipelinechannel--evaluation_batch_predict_machine_type:
parameterType: STRING
pipelinechannel--evaluation_batch_predict_max_replica_count:
parameterType: NUMBER_INTEGER
pipelinechannel--evaluation_batch_predict_starting_replica_count:
parameterType: NUMBER_INTEGER
pipelinechannel--evaluation_dataflow_disk_size_gb:
parameterType: NUMBER_INTEGER
pipelinechannel--evaluation_dataflow_machine_type:
parameterType: STRING
pipelinechannel--evaluation_dataflow_max_num_workers:
parameterType: NUMBER_INTEGER
pipelinechannel--evaluation_dataflow_starting_num_workers:
parameterType: NUMBER_INTEGER
pipelinechannel--location:
parameterType: STRING
pipelinechannel--prediction_type:
parameterType: STRING
pipelinechannel--project:
parameterType: STRING
pipelinechannel--root_dir:
parameterType: STRING
pipelinechannel--string-not-empty-Output:
parameterType: STRING
pipelinechannel--tabular-stats-and-example-gen-downsampled_test_split_json:
parameterType: LIST
pipelinechannel--tabular-stats-and-example-gen-test_split_json:
parameterType: LIST
pipelinechannel--target_column:
parameterType: STRING
outputDefinitions:
artifacts:
feature-attribution-feature_attributions:
artifactType:
schemaTitle: system.Metrics
schemaVersion: 0.0.1
model-evaluation-evaluation_metrics:
artifactType:
schemaTitle: system.Metrics
schemaVersion: 0.0.1
comp-condition-4:
dag:
outputs:
artifacts:
feature-attribution-2-feature_attributions:
artifactSelectors:
- outputArtifactKey: feature-attribution-2-feature_attributions
producerSubtask: condition-5
feature-attribution-3-feature_attributions:
artifactSelectors:
- outputArtifactKey: feature-attribution-3-feature_attributions
producerSubtask: condition-7
model-evaluation-2-evaluation_metrics:
artifactSelectors:
- outputArtifactKey: model-evaluation-2-evaluation_metrics
producerSubtask: condition-5
model-evaluation-3-evaluation_metrics:
artifactSelectors:
- outputArtifactKey: model-evaluation-3-evaluation_metrics
producerSubtask: condition-7
tasks:
automl-tabular-cv-trainer-2:
cachingOptions:
enableCache: true
componentRef:
name: comp-automl-tabular-cv-trainer-2
dependentTasks:
- automl-tabular-stage-1-tuner
- calculate-training-parameters-2
inputs:
artifacts:
materialized_cv_splits:
componentInputArtifact: pipelinechannel--merge-materialized-splits-splits
metadata:
componentInputArtifact: pipelinechannel--tabular-stats-and-example-gen-metadata
transform_output:
componentInputArtifact: pipelinechannel--automl-tabular-transform-transform_output
tuning_result_input:
taskOutputArtifact:
outputArtifactKey: tuning_result_output
producerTask: automl-tabular-stage-1-tuner
parameters:
deadline_hours:
taskOutputParameter:
outputParameterKey: stage_2_deadline_hours
producerTask: calculate-training-parameters-2
encryption_spec_key_name:
componentInputParameter: pipelinechannel--encryption_spec_key_name
location:
componentInputParameter: pipelinechannel--location
num_parallel_trials:
componentInputParameter: pipelinechannel--stage_2_num_parallel_trials
num_selected_trials:
componentInputParameter: pipelinechannel--stage_2_num_selected_trials
project:
componentInputParameter: pipelinechannel--project
root_dir:
componentInputParameter: pipelinechannel--root_dir
single_run_max_secs:
taskOutputParameter:
outputParameterKey: stage_2_single_run_max_secs
producerTask: calculate-training-parameters-2
worker_pool_specs_override_json:
componentInputParameter: pipelinechannel--cv_trainer_worker_pool_specs_override
taskInfo:
name: automl-tabular-cv-trainer-2
automl-tabular-ensemble-2:
cachingOptions:
enableCache: true
componentRef:
name: comp-automl-tabular-ensemble-2
dependentTasks:
- automl-tabular-cv-trainer-2
inputs:
artifacts:
dataset_schema:
componentInputArtifact: pipelinechannel--tabular-stats-and-example-gen-dataset_schema
instance_baseline:
componentInputArtifact: pipelinechannel--tabular-stats-and-example-gen-instance_baseline
metadata:
componentInputArtifact: pipelinechannel--tabular-stats-and-example-gen-metadata
transform_output:
componentInputArtifact: pipelinechannel--automl-tabular-transform-transform_output
tuning_result_input:
taskOutputArtifact:
outputArtifactKey: tuning_result_output
producerTask: automl-tabular-cv-trainer-2
warmup_data:
componentInputArtifact: pipelinechannel--tabular-stats-and-example-gen-eval_split
parameters:
encryption_spec_key_name:
componentInputParameter: pipelinechannel--encryption_spec_key_name
export_additional_model_without_custom_ops:
componentInputParameter: pipelinechannel--export_additional_model_without_custom_ops
location:
componentInputParameter: pipelinechannel--location
project:
componentInputParameter: pipelinechannel--project
root_dir:
componentInputParameter: pipelinechannel--root_dir
taskInfo:
name: automl-tabular-ensemble-2
automl-tabular-infra-validator-2:
cachingOptions:
enableCache: true
componentRef:
name: comp-automl-tabular-infra-validator-2
dependentTasks:
- automl-tabular-ensemble-2
inputs:
artifacts:
unmanaged_container_model:
taskOutputArtifact:
outputArtifactKey: unmanaged_container_model
producerTask: automl-tabular-ensemble-2
taskInfo:
name: automl-tabular-infra-validator-2
automl-tabular-stage-1-tuner:
cachingOptions:
enableCache: true
componentRef:
name: comp-automl-tabular-stage-1-tuner
dependentTasks:
- calculate-training-parameters-2
inputs:
artifacts:
materialized_eval_split:
componentInputArtifact: pipelinechannel--automl-tabular-transform-materialized_eval_split
materialized_train_split:
componentInputArtifact: pipelinechannel--automl-tabular-transform-materialized_train_split
metadata:
componentInputArtifact: pipelinechannel--tabular-stats-and-example-gen-metadata
transform_output:
componentInputArtifact: pipelinechannel--automl-tabular-transform-transform_output
parameters:
deadline_hours:
taskOutputParameter:
outputParameterKey: stage_1_deadline_hours
producerTask: calculate-training-parameters-2
disable_early_stopping:
componentInputParameter: pipelinechannel--disable_early_stopping
encryption_spec_key_name:
componentInputParameter: pipelinechannel--encryption_spec_key_name
location:
componentInputParameter: pipelinechannel--location
num_parallel_trials:
componentInputParameter: pipelinechannel--stage_1_num_parallel_trials
num_selected_trials:
taskOutputParameter:
outputParameterKey: stage_1_num_selected_trials
producerTask: calculate-training-parameters-2
project:
componentInputParameter: pipelinechannel--project
reduce_search_space_mode:
taskOutputParameter:
outputParameterKey: reduce_search_space_mode
producerTask: calculate-training-parameters-2
root_dir:
componentInputParameter: pipelinechannel--root_dir
single_run_max_secs:
taskOutputParameter:
outputParameterKey: stage_1_single_run_max_secs
producerTask: calculate-training-parameters-2
study_spec_parameters_override:
componentInputParameter: pipelinechannel--study_spec_parameters_override
worker_pool_specs_override_json:
componentInputParameter: pipelinechannel--stage_1_tuner_worker_pool_specs_override
taskInfo:
name: automl-tabular-stage-1-tuner
bool-identity-2:
cachingOptions:
enableCache: true
componentRef:
name: comp-bool-identity-2
inputs:
parameters:
value:
componentInputParameter: pipelinechannel--run_evaluation
taskInfo:
name: bool-identity-2
bool-identity-3:
cachingOptions:
enableCache: true
componentRef:
name: comp-bool-identity-3
inputs:
parameters:
value:
componentInputParameter: pipelinechannel--run_distillation
taskInfo:
name: bool-identity-3
calculate-training-parameters-2:
cachingOptions:
enableCache: true
componentRef:
name: comp-calculate-training-parameters-2
inputs:
parameters:
fast_testing:
componentInputParameter: pipelinechannel--fast_testing
is_skip_architecture_search:
runtimeValue:
constant: 0.0
run_distillation:
componentInputParameter: pipelinechannel--run_distillation
stage_1_num_parallel_trials:
componentInputParameter: pipelinechannel--stage_1_num_parallel_trials
stage_2_num_parallel_trials:
componentInputParameter: pipelinechannel--stage_2_num_parallel_trials
train_budget_milli_node_hours:
componentInputParameter: pipelinechannel--train_budget_milli_node_hours
taskInfo:
name: calculate-training-parameters-2
condition-5:
componentRef:
name: comp-condition-5
dependentTasks:
- automl-tabular-ensemble-2
- bool-identity-2
- bool-identity-3
inputs:
artifacts:
pipelinechannel--automl-tabular-ensemble-2-explanation_metadata_artifact:
taskOutputArtifact:
outputArtifactKey: explanation_metadata_artifact
producerTask: automl-tabular-ensemble-2
pipelinechannel--automl-tabular-ensemble-2-unmanaged_container_model:
taskOutputArtifact:
outputArtifactKey: unmanaged_container_model
producerTask: automl-tabular-ensemble-2
parameters:
pipelinechannel--automl-tabular-ensemble-2-explanation_parameters:
taskOutputParameter:
outputParameterKey: explanation_parameters
producerTask: automl-tabular-ensemble-2
pipelinechannel--bool-identity-2-Output:
taskOutputParameter:
outputParameterKey: Output
producerTask: bool-identity-2
pipelinechannel--bool-identity-3-Output:
taskOutputParameter:
outputParameterKey: Output
producerTask: bool-identity-3
pipelinechannel--dataflow_service_account:
componentInputParameter: pipelinechannel--dataflow_service_account
pipelinechannel--dataflow_subnetwork:
componentInputParameter: pipelinechannel--dataflow_subnetwork
pipelinechannel--dataflow_use_public_ips:
componentInputParameter: pipelinechannel--dataflow_use_public_ips
pipelinechannel--encryption_spec_key_name:
componentInputParameter: pipelinechannel--encryption_spec_key_name
pipelinechannel--evaluation_batch_explain_machine_type:
componentInputParameter: pipelinechannel--evaluation_batch_explain_machine_type
pipelinechannel--evaluation_batch_explain_max_replica_count:
componentInputParameter: pipelinechannel--evaluation_batch_explain_max_replica_count
pipelinechannel--evaluation_batch_explain_starting_replica_count:
componentInputParameter: pipelinechannel--evaluation_batch_explain_starting_replica_count
pipelinechannel--evaluation_batch_predict_machine_type:
componentInputParameter: pipelinechannel--evaluation_batch_predict_machine_type
pipelinechannel--evaluation_batch_predict_max_replica_count:
componentInputParameter: pipelinechannel--evaluation_batch_predict_max_replica_count
pipelinechannel--evaluation_batch_predict_starting_replica_count:
componentInputParameter: pipelinechannel--evaluation_batch_predict_starting_replica_count
pipelinechannel--evaluation_dataflow_disk_size_gb:
componentInputParameter: pipelinechannel--evaluation_dataflow_disk_size_gb
pipelinechannel--evaluation_dataflow_machine_type:
componentInputParameter: pipelinechannel--evaluation_dataflow_machine_type
pipelinechannel--evaluation_dataflow_max_num_workers:
componentInputParameter: pipelinechannel--evaluation_dataflow_max_num_workers
pipelinechannel--evaluation_dataflow_starting_num_workers:
componentInputParameter: pipelinechannel--evaluation_dataflow_starting_num_workers
pipelinechannel--location:
componentInputParameter: pipelinechannel--location
pipelinechannel--model_description:
componentInputParameter: pipelinechannel--model_description
pipelinechannel--prediction_type:
componentInputParameter: pipelinechannel--prediction_type
pipelinechannel--project:
componentInputParameter: pipelinechannel--project
pipelinechannel--root_dir:
componentInputParameter: pipelinechannel--root_dir
pipelinechannel--set-optional-inputs-model_display_name:
componentInputParameter: pipelinechannel--set-optional-inputs-model_display_name
pipelinechannel--string-not-empty-Output:
componentInputParameter: pipelinechannel--string-not-empty-Output
pipelinechannel--tabular-stats-and-example-gen-downsampled_test_split_json:
componentInputParameter: pipelinechannel--tabular-stats-and-example-gen-downsampled_test_split_json
pipelinechannel--tabular-stats-and-example-gen-test_split_json:
componentInputParameter: pipelinechannel--tabular-stats-and-example-gen-test_split_json
pipelinechannel--target_column:
componentInputParameter: pipelinechannel--target_column
taskInfo:
name: no-distill
triggerPolicy:
condition: inputs.parameter_values['pipelinechannel--bool-identity-3-Output']
== 'false'
condition-7:
componentRef:
name: comp-condition-7
dependentTasks:
- automl-tabular-ensemble-2
- bool-identity-2
- bool-identity-3
- calculate-training-parameters-2
inputs:
artifacts:
pipelinechannel--automl-tabular-ensemble-2-unmanaged_container_model:
taskOutputArtifact:
outputArtifactKey: unmanaged_container_model
producerTask: automl-tabular-ensemble-2
pipelinechannel--tabular-stats-and-example-gen-dataset_schema:
componentInputArtifact: pipelinechannel--tabular-stats-and-example-gen-dataset_schema
pipelinechannel--tabular-stats-and-example-gen-eval_split:
componentInputArtifact: pipelinechannel--tabular-stats-and-example-gen-eval_split
pipelinechannel--tabular-stats-and-example-gen-instance_baseline:
componentInputArtifact: pipelinechannel--tabular-stats-and-example-gen-instance_baseline
pipelinechannel--tabular-stats-and-example-gen-metadata:
componentInputArtifact: pipelinechannel--tabular-stats-and-example-gen-metadata
pipelinechannel--tabular-stats-and-example-gen-test_split:
componentInputArtifact: pipelinechannel--tabular-stats-and-example-gen-test_split
pipelinechannel--tabular-stats-and-example-gen-train_split:
componentInputArtifact: pipelinechannel--tabular-stats-and-example-gen-train_split
parameters:
pipelinechannel--bool-identity-2-Output:
taskOutputParameter:
outputParameterKey: Output
producerTask: bool-identity-2
pipelinechannel--bool-identity-3-Output:
taskOutputParameter:
outputParameterKey: Output
producerTask: bool-identity-3
pipelinechannel--calculate-training-parameters-2-distill_stage_1_deadline_hours:
taskOutputParameter:
outputParameterKey: distill_stage_1_deadline_hours
producerTask: calculate-training-parameters-2
pipelinechannel--calculate-training-parameters-2-reduce_search_space_mode:
taskOutputParameter:
outputParameterKey: reduce_search_space_mode
producerTask: calculate-training-parameters-2
pipelinechannel--calculate-training-parameters-2-stage_1_single_run_max_secs:
taskOutputParameter:
outputParameterKey: stage_1_single_run_max_secs
producerTask: calculate-training-parameters-2
pipelinechannel--dataflow_service_account:
componentInputParameter: pipelinechannel--dataflow_service_account
pipelinechannel--dataflow_subnetwork:
componentInputParameter: pipelinechannel--dataflow_subnetwork
pipelinechannel--dataflow_use_public_ips:
componentInputParameter: pipelinechannel--dataflow_use_public_ips
pipelinechannel--disable_early_stopping:
componentInputParameter: pipelinechannel--disable_early_stopping
pipelinechannel--distill_batch_predict_machine_type:
componentInputParameter: pipelinechannel--distill_batch_predict_machine_type
pipelinechannel--distill_batch_predict_max_replica_count:
componentInputParameter: pipelinechannel--distill_batch_predict_max_replica_count
pipelinechannel--distill_batch_predict_starting_replica_count:
componentInputParameter: pipelinechannel--distill_batch_predict_starting_replica_count
pipelinechannel--encryption_spec_key_name:
componentInputParameter: pipelinechannel--encryption_spec_key_name
pipelinechannel--evaluation_batch_explain_machine_type:
componentInputParameter: pipelinechannel--evaluation_batch_explain_machine_type
pipelinechannel--evaluation_batch_explain_max_replica_count:
componentInputParameter: pipelinechannel--evaluation_batch_explain_max_replica_count
pipelinechannel--evaluation_batch_explain_starting_replica_count:
componentInputParameter: pipelinechannel--evaluation_batch_explain_starting_replica_count
pipelinechannel--evaluation_batch_predict_machine_type:
componentInputParameter: pipelinechannel--evaluation_batch_predict_machine_type
pipelinechannel--evaluation_batch_predict_max_replica_count:
componentInputParameter: pipelinechannel--evaluation_batch_predict_max_replica_count
pipelinechannel--evaluation_batch_predict_starting_replica_count:
componentInputParameter: pipelinechannel--evaluation_batch_predict_starting_replica_count
pipelinechannel--evaluation_dataflow_disk_size_gb:
componentInputParameter: pipelinechannel--evaluation_dataflow_disk_size_gb
pipelinechannel--evaluation_dataflow_machine_type:
componentInputParameter: pipelinechannel--evaluation_dataflow_machine_type
pipelinechannel--evaluation_dataflow_max_num_workers:
componentInputParameter: pipelinechannel--evaluation_dataflow_max_num_workers
pipelinechannel--evaluation_dataflow_starting_num_workers:
componentInputParameter: pipelinechannel--evaluation_dataflow_starting_num_workers
pipelinechannel--export_additional_model_without_custom_ops:
componentInputParameter: pipelinechannel--export_additional_model_without_custom_ops
pipelinechannel--location:
componentInputParameter: pipelinechannel--location
pipelinechannel--prediction_type:
componentInputParameter: pipelinechannel--prediction_type
pipelinechannel--project:
componentInputParameter: pipelinechannel--project
pipelinechannel--root_dir:
componentInputParameter: pipelinechannel--root_dir
pipelinechannel--stage_1_num_parallel_trials:
componentInputParameter: pipelinechannel--stage_1_num_parallel_trials
pipelinechannel--stage_1_tuner_worker_pool_specs_override:
componentInputParameter: pipelinechannel--stage_1_tuner_worker_pool_specs_override
pipelinechannel--string-not-empty-Output:
componentInputParameter: pipelinechannel--string-not-empty-Output
pipelinechannel--tabular-stats-and-example-gen-downsampled_test_split_json:
componentInputParameter: pipelinechannel--tabular-stats-and-example-gen-downsampled_test_split_json
pipelinechannel--tabular-stats-and-example-gen-test_split_json:
componentInputParameter: pipelinechannel--tabular-stats-and-example-gen-test_split_json
pipelinechannel--target_column:
componentInputParameter: pipelinechannel--target_column
pipelinechannel--transform_dataflow_disk_size_gb:
componentInputParameter: pipelinechannel--transform_dataflow_disk_size_gb
pipelinechannel--transform_dataflow_machine_type:
componentInputParameter: pipelinechannel--transform_dataflow_machine_type
pipelinechannel--transform_dataflow_max_num_workers:
componentInputParameter: pipelinechannel--transform_dataflow_max_num_workers
taskInfo:
name: is-distill
triggerPolicy:
condition: inputs.parameter_values['pipelinechannel--bool-identity-3-Output']
== 'true'
inputDefinitions:
artifacts:
pipelinechannel--automl-tabular-transform-materialized_eval_split:
artifactType:
schemaTitle: system.Artifact
schemaVersion: 0.0.1
pipelinechannel--automl-tabular-transform-materialized_train_split:
artifactType:
schemaTitle: system.Artifact
schemaVersion: 0.0.1
pipelinechannel--automl-tabular-transform-transform_output:
artifactType:
schemaTitle: system.Artifact
schemaVersion: 0.0.1
pipelinechannel--merge-materialized-splits-splits:
artifactType:
schemaTitle: system.Artifact
schemaVersion: 0.0.1
pipelinechannel--tabular-stats-and-example-gen-dataset_schema:
artifactType:
schemaTitle: system.Artifact
schemaVersion: 0.0.1
pipelinechannel--tabular-stats-and-example-gen-eval_split:
artifactType:
schemaTitle: system.Dataset
schemaVersion: 0.0.1
pipelinechannel--tabular-stats-and-example-gen-instance_baseline:
artifactType:
schemaTitle: system.Artifact
schemaVersion: 0.0.1
pipelinechannel--tabular-stats-and-example-gen-metadata:
artifactType:
schemaTitle: system.Artifact
schemaVersion: 0.0.1
pipelinechannel--tabular-stats-and-example-gen-test_split:
artifactType:
schemaTitle: system.Dataset
schemaVersion: 0.0.1
pipelinechannel--tabular-stats-and-example-gen-train_split:
artifactType:
schemaTitle: system.Dataset
schemaVersion: 0.0.1
parameters:
pipelinechannel--cv_trainer_worker_pool_specs_override:
parameterType: LIST
pipelinechannel--dataflow_service_account:
parameterType: STRING
pipelinechannel--dataflow_subnetwork:
parameterType: STRING
pipelinechannel--dataflow_use_public_ips:
parameterType: BOOLEAN
pipelinechannel--disable_early_stopping:
parameterType: BOOLEAN
pipelinechannel--distill_batch_predict_machine_type:
parameterType: STRING
pipelinechannel--distill_batch_predict_max_replica_count:
parameterType: NUMBER_INTEGER
pipelinechannel--distill_batch_predict_starting_replica_count:
parameterType: NUMBER_INTEGER
pipelinechannel--encryption_spec_key_name:
parameterType: STRING
pipelinechannel--evaluation_batch_explain_machine_type:
parameterType: STRING
pipelinechannel--evaluation_batch_explain_max_replica_count:
parameterType: NUMBER_INTEGER
pipelinechannel--evaluation_batch_explain_starting_replica_count:
parameterType: NUMBER_INTEGER
pipelinechannel--evaluation_batch_predict_machine_type:
parameterType: STRING
pipelinechannel--evaluation_batch_predict_max_replica_count:
parameterType: NUMBER_INTEGER
pipelinechannel--evaluation_batch_predict_starting_replica_count:
parameterType: NUMBER_INTEGER
pipelinechannel--evaluation_dataflow_disk_size_gb:
parameterType: NUMBER_INTEGER
pipelinechannel--evaluation_dataflow_machine_type:
parameterType: STRING
pipelinechannel--evaluation_dataflow_max_num_workers:
parameterType: NUMBER_INTEGER
pipelinechannel--evaluation_dataflow_starting_num_workers:
parameterType: NUMBER_INTEGER
pipelinechannel--export_additional_model_without_custom_ops:
parameterType: BOOLEAN
pipelinechannel--fast_testing:
parameterType: BOOLEAN
pipelinechannel--location:
parameterType: STRING
pipelinechannel--model_description:
parameterType: STRING
pipelinechannel--prediction_type:
parameterType: STRING
pipelinechannel--project:
parameterType: STRING
pipelinechannel--root_dir:
parameterType: STRING
pipelinechannel--run_distillation:
parameterType: BOOLEAN
pipelinechannel--run_evaluation:
parameterType: BOOLEAN
pipelinechannel--set-optional-inputs-model_display_name:
parameterType: STRING
pipelinechannel--stage_1_num_parallel_trials:
parameterType: NUMBER_INTEGER
pipelinechannel--stage_1_tuner_worker_pool_specs_override:
parameterType: LIST
pipelinechannel--stage_2_num_parallel_trials:
parameterType: NUMBER_INTEGER
pipelinechannel--stage_2_num_selected_trials:
parameterType: NUMBER_INTEGER
pipelinechannel--string-not-empty-Output:
parameterType: STRING
pipelinechannel--study_spec_parameters_override:
parameterType: LIST
pipelinechannel--tabular-stats-and-example-gen-downsampled_test_split_json:
parameterType: LIST
pipelinechannel--tabular-stats-and-example-gen-test_split_json:
parameterType: LIST
pipelinechannel--target_column:
parameterType: STRING
pipelinechannel--train_budget_milli_node_hours:
parameterType: NUMBER_DOUBLE
pipelinechannel--transform_dataflow_disk_size_gb:
parameterType: NUMBER_INTEGER
pipelinechannel--transform_dataflow_machine_type:
parameterType: STRING
pipelinechannel--transform_dataflow_max_num_workers:
parameterType: NUMBER_INTEGER
outputDefinitions:
artifacts:
feature-attribution-2-feature_attributions:
artifactType:
schemaTitle: system.Metrics
schemaVersion: 0.0.1
feature-attribution-3-feature_attributions:
artifactType:
schemaTitle: system.Metrics
schemaVersion: 0.0.1
model-evaluation-2-evaluation_metrics:
artifactType:
schemaTitle: system.Metrics
schemaVersion: 0.0.1
model-evaluation-3-evaluation_metrics:
artifactType:
schemaTitle: system.Metrics
schemaVersion: 0.0.1
comp-condition-5:
dag:
outputs:
artifacts:
feature-attribution-2-feature_attributions:
artifactSelectors:
- outputArtifactKey: feature-attribution-2-feature_attributions
producerSubtask: condition-6
model-evaluation-2-evaluation_metrics:
artifactSelectors:
- outputArtifactKey: model-evaluation-2-evaluation_metrics
producerSubtask: condition-6
tasks:
condition-6:
componentRef:
name: comp-condition-6
dependentTasks:
- model-upload-2
inputs:
artifacts:
pipelinechannel--automl-tabular-ensemble-2-explanation_metadata_artifact:
componentInputArtifact: pipelinechannel--automl-tabular-ensemble-2-explanation_metadata_artifact
pipelinechannel--automl-tabular-ensemble-2-unmanaged_container_model:
componentInputArtifact: pipelinechannel--automl-tabular-ensemble-2-unmanaged_container_model
pipelinechannel--model-upload-2-model:
taskOutputArtifact:
outputArtifactKey: model
producerTask: model-upload-2
parameters:
pipelinechannel--automl-tabular-ensemble-2-explanation_parameters:
componentInputParameter: pipelinechannel--automl-tabular-ensemble-2-explanation_parameters
pipelinechannel--bool-identity-2-Output:
componentInputParameter: pipelinechannel--bool-identity-2-Output
pipelinechannel--bool-identity-3-Output:
componentInputParameter: pipelinechannel--bool-identity-3-Output
pipelinechannel--dataflow_service_account:
componentInputParameter: pipelinechannel--dataflow_service_account
pipelinechannel--dataflow_subnetwork:
componentInputParameter: pipelinechannel--dataflow_subnetwork
pipelinechannel--dataflow_use_public_ips:
componentInputParameter: pipelinechannel--dataflow_use_public_ips
pipelinechannel--encryption_spec_key_name:
componentInputParameter: pipelinechannel--encryption_spec_key_name
pipelinechannel--evaluation_batch_explain_machine_type:
componentInputParameter: pipelinechannel--evaluation_batch_explain_machine_type
pipelinechannel--evaluation_batch_explain_max_replica_count:
componentInputParameter: pipelinechannel--evaluation_batch_explain_max_replica_count
pipelinechannel--evaluation_batch_explain_starting_replica_count:
componentInputParameter: pipelinechannel--evaluation_batch_explain_starting_replica_count
pipelinechannel--evaluation_batch_predict_machine_type:
componentInputParameter: pipelinechannel--evaluation_batch_predict_machine_type
pipelinechannel--evaluation_batch_predict_max_replica_count:
componentInputParameter: pipelinechannel--evaluation_batch_predict_max_replica_count
pipelinechannel--evaluation_batch_predict_starting_replica_count:
componentInputParameter: pipelinechannel--evaluation_batch_predict_starting_replica_count
pipelinechannel--evaluation_dataflow_disk_size_gb:
componentInputParameter: pipelinechannel--evaluation_dataflow_disk_size_gb
pipelinechannel--evaluation_dataflow_machine_type:
componentInputParameter: pipelinechannel--evaluation_dataflow_machine_type
pipelinechannel--evaluation_dataflow_max_num_workers:
componentInputParameter: pipelinechannel--evaluation_dataflow_max_num_workers
pipelinechannel--evaluation_dataflow_starting_num_workers:
componentInputParameter: pipelinechannel--evaluation_dataflow_starting_num_workers
pipelinechannel--location:
componentInputParameter: pipelinechannel--location
pipelinechannel--prediction_type:
componentInputParameter: pipelinechannel--prediction_type
pipelinechannel--project:
componentInputParameter: pipelinechannel--project
pipelinechannel--root_dir:
componentInputParameter: pipelinechannel--root_dir
pipelinechannel--string-not-empty-Output:
componentInputParameter: pipelinechannel--string-not-empty-Output
pipelinechannel--tabular-stats-and-example-gen-downsampled_test_split_json:
componentInputParameter: pipelinechannel--tabular-stats-and-example-gen-downsampled_test_split_json
pipelinechannel--tabular-stats-and-example-gen-test_split_json:
componentInputParameter: pipelinechannel--tabular-stats-and-example-gen-test_split_json
pipelinechannel--target_column:
componentInputParameter: pipelinechannel--target_column
taskInfo:
name: is-evaluation
triggerPolicy:
condition: inputs.parameter_values['pipelinechannel--bool-identity-2-Output']
== 'true'
model-upload-2:
cachingOptions:
enableCache: true
componentRef:
name: comp-model-upload-2
inputs:
artifacts:
explanation_metadata_artifact:
componentInputArtifact: pipelinechannel--automl-tabular-ensemble-2-explanation_metadata_artifact
unmanaged_container_model:
componentInputArtifact: pipelinechannel--automl-tabular-ensemble-2-unmanaged_container_model
parameters:
description:
componentInputParameter: pipelinechannel--model_description
display_name:
componentInputParameter: pipelinechannel--set-optional-inputs-model_display_name
encryption_spec_key_name:
componentInputParameter: pipelinechannel--encryption_spec_key_name
explanation_parameters:
componentInputParameter: pipelinechannel--automl-tabular-ensemble-2-explanation_parameters
location:
componentInputParameter: pipelinechannel--location
project:
componentInputParameter: pipelinechannel--project
taskInfo:
name: model-upload-2
inputDefinitions:
artifacts:
pipelinechannel--automl-tabular-ensemble-2-explanation_metadata_artifact:
artifactType:
schemaTitle: system.Artifact
schemaVersion: 0.0.1
pipelinechannel--automl-tabular-ensemble-2-unmanaged_container_model:
artifactType:
schemaTitle: google.UnmanagedContainerModel
schemaVersion: 0.0.1
parameters:
pipelinechannel--automl-tabular-ensemble-2-explanation_parameters:
parameterType: STRUCT
pipelinechannel--bool-identity-2-Output:
parameterType: STRING
pipelinechannel--bool-identity-3-Output:
parameterType: STRING
pipelinechannel--dataflow_service_account:
parameterType: STRING
pipelinechannel--dataflow_subnetwork:
parameterType: STRING
pipelinechannel--dataflow_use_public_ips:
parameterType: BOOLEAN
pipelinechannel--encryption_spec_key_name:
parameterType: STRING
pipelinechannel--evaluation_batch_explain_machine_type:
parameterType: STRING
pipelinechannel--evaluation_batch_explain_max_replica_count:
parameterType: NUMBER_INTEGER
pipelinechannel--evaluation_batch_explain_starting_replica_count:
parameterType: NUMBER_INTEGER
pipelinechannel--evaluation_batch_predict_machine_type:
parameterType: STRING
pipelinechannel--evaluation_batch_predict_max_replica_count:
parameterType: NUMBER_INTEGER
pipelinechannel--evaluation_batch_predict_starting_replica_count:
parameterType: NUMBER_INTEGER
pipelinechannel--evaluation_dataflow_disk_size_gb:
parameterType: NUMBER_INTEGER
pipelinechannel--evaluation_dataflow_machine_type:
parameterType: STRING
pipelinechannel--evaluation_dataflow_max_num_workers:
parameterType: NUMBER_INTEGER
pipelinechannel--evaluation_dataflow_starting_num_workers:
parameterType: NUMBER_INTEGER
pipelinechannel--location:
parameterType: STRING
pipelinechannel--model_description:
parameterType: STRING
pipelinechannel--prediction_type:
parameterType: STRING
pipelinechannel--project:
parameterType: STRING
pipelinechannel--root_dir:
parameterType: STRING
pipelinechannel--set-optional-inputs-model_display_name:
parameterType: STRING
pipelinechannel--string-not-empty-Output:
parameterType: STRING
pipelinechannel--tabular-stats-and-example-gen-downsampled_test_split_json:
parameterType: LIST
pipelinechannel--tabular-stats-and-example-gen-test_split_json:
parameterType: LIST
pipelinechannel--target_column:
parameterType: STRING
outputDefinitions:
artifacts:
feature-attribution-2-feature_attributions:
artifactType:
schemaTitle: system.Metrics
schemaVersion: 0.0.1
model-evaluation-2-evaluation_metrics:
artifactType:
schemaTitle: system.Metrics
schemaVersion: 0.0.1
comp-condition-6:
dag:
outputs:
artifacts:
feature-attribution-2-feature_attributions:
artifactSelectors:
- outputArtifactKey: feature_attributions
producerSubtask: feature-attribution-2
model-evaluation-2-evaluation_metrics:
artifactSelectors:
- outputArtifactKey: evaluation_metrics
producerSubtask: model-evaluation-2
tasks:
feature-attribution-2:
cachingOptions:
enableCache: true
componentRef:
name: comp-feature-attribution-2
dependentTasks:
- model-batch-explanation-2
inputs:
artifacts:
predictions_gcs_source:
taskOutputArtifact:
outputArtifactKey: gcs_output_directory
producerTask: model-batch-explanation-2
parameters:
dataflow_disk_size:
componentInputParameter: pipelinechannel--evaluation_dataflow_disk_size_gb
dataflow_machine_type:
componentInputParameter: pipelinechannel--evaluation_dataflow_machine_type
dataflow_max_workers_num:
componentInputParameter: pipelinechannel--evaluation_dataflow_max_num_workers
dataflow_service_account:
componentInputParameter: pipelinechannel--dataflow_service_account
dataflow_subnetwork:
componentInputParameter: pipelinechannel--dataflow_subnetwork
dataflow_use_public_ips:
componentInputParameter: pipelinechannel--dataflow_use_public_ips
dataflow_workers_num:
componentInputParameter: pipelinechannel--evaluation_dataflow_starting_num_workers
encryption_spec_key_name:
componentInputParameter: pipelinechannel--encryption_spec_key_name
location:
componentInputParameter: pipelinechannel--location
predictions_format:
runtimeValue:
constant: jsonl
project:
componentInputParameter: pipelinechannel--project
root_dir:
componentInputParameter: pipelinechannel--root_dir
taskInfo:
name: feature-attribution-2
model-batch-explanation-2:
cachingOptions:
enableCache: true
componentRef:
name: comp-model-batch-explanation-2
inputs:
artifacts:
explanation_metadata_artifact:
componentInputArtifact: pipelinechannel--automl-tabular-ensemble-2-explanation_metadata_artifact
unmanaged_container_model:
componentInputArtifact: pipelinechannel--automl-tabular-ensemble-2-unmanaged_container_model
parameters:
encryption_spec_key_name:
componentInputParameter: pipelinechannel--encryption_spec_key_name
explanation_parameters:
componentInputParameter: pipelinechannel--automl-tabular-ensemble-2-explanation_parameters
gcs_destination_output_uri_prefix:
componentInputParameter: pipelinechannel--root_dir
gcs_source_uris:
componentInputParameter: pipelinechannel--tabular-stats-and-example-gen-downsampled_test_split_json
generate_explanation:
runtimeValue:
constant: 1.0
instances_format:
runtimeValue:
constant: tf-record
job_display_name:
runtimeValue:
constant: batch-explain-evaluation-{{$.pipeline_job_uuid}}-{{$.pipeline_task_uuid}}
location:
componentInputParameter: pipelinechannel--location
machine_type:
componentInputParameter: pipelinechannel--evaluation_batch_explain_machine_type
max_replica_count:
componentInputParameter: pipelinechannel--evaluation_batch_explain_max_replica_count
predictions_format:
runtimeValue:
constant: jsonl
project:
componentInputParameter: pipelinechannel--project
starting_replica_count:
componentInputParameter: pipelinechannel--evaluation_batch_explain_starting_replica_count
taskInfo:
name: model-batch-explanation-2
model-batch-predict-2:
cachingOptions:
enableCache: true
componentRef:
name: comp-model-batch-predict-2
inputs:
artifacts:
unmanaged_container_model:
componentInputArtifact: pipelinechannel--automl-tabular-ensemble-2-unmanaged_container_model
parameters:
encryption_spec_key_name:
componentInputParameter: pipelinechannel--encryption_spec_key_name
gcs_destination_output_uri_prefix:
componentInputParameter: pipelinechannel--root_dir
gcs_source_uris:
componentInputParameter: pipelinechannel--tabular-stats-and-example-gen-test_split_json
instances_format:
runtimeValue:
constant: tf-record
job_display_name:
runtimeValue:
constant: batch-predict-evaluation-{{$.pipeline_job_uuid}}-{{$.pipeline_task_uuid}}
location:
componentInputParameter: pipelinechannel--location
machine_type:
componentInputParameter: pipelinechannel--evaluation_batch_predict_machine_type
max_replica_count:
componentInputParameter: pipelinechannel--evaluation_batch_predict_max_replica_count
predictions_format:
runtimeValue:
constant: jsonl
project:
componentInputParameter: pipelinechannel--project
starting_replica_count:
componentInputParameter: pipelinechannel--evaluation_batch_predict_starting_replica_count
taskInfo:
name: model-batch-predict-2
model-evaluation-2:
cachingOptions:
enableCache: true
componentRef:
name: comp-model-evaluation-2
dependentTasks:
- model-batch-predict-2
inputs:
artifacts:
batch_prediction_job:
taskOutputArtifact:
outputArtifactKey: batchpredictionjob
producerTask: model-batch-predict-2
parameters:
dataflow_disk_size:
componentInputParameter: pipelinechannel--evaluation_dataflow_disk_size_gb
dataflow_machine_type:
componentInputParameter: pipelinechannel--evaluation_dataflow_machine_type
dataflow_max_workers_num:
componentInputParameter: pipelinechannel--evaluation_dataflow_max_num_workers
dataflow_service_account:
componentInputParameter: pipelinechannel--dataflow_service_account
dataflow_subnetwork:
componentInputParameter: pipelinechannel--dataflow_subnetwork
dataflow_use_public_ips:
componentInputParameter: pipelinechannel--dataflow_use_public_ips
dataflow_workers_num:
componentInputParameter: pipelinechannel--evaluation_dataflow_starting_num_workers
encryption_spec_key_name:
componentInputParameter: pipelinechannel--encryption_spec_key_name
ground_truth_column:
componentInputParameter: pipelinechannel--target_column
ground_truth_format:
runtimeValue:
constant: jsonl
location:
componentInputParameter: pipelinechannel--location
prediction_label_column:
runtimeValue:
constant: ''
prediction_score_column:
runtimeValue:
constant: ''
predictions_format:
runtimeValue:
constant: jsonl
problem_type:
componentInputParameter: pipelinechannel--prediction_type
project:
componentInputParameter: pipelinechannel--project
root_dir:
componentInputParameter: pipelinechannel--root_dir
taskInfo:
name: model-evaluation-2
model-evaluation-import-2:
cachingOptions:
enableCache: true
componentRef:
name: comp-model-evaluation-import-2
dependentTasks:
- feature-attribution-2
- model-evaluation-2
inputs:
artifacts:
feature_attributions:
taskOutputArtifact:
outputArtifactKey: feature_attributions
producerTask: feature-attribution-2
metrics:
taskOutputArtifact:
outputArtifactKey: evaluation_metrics
producerTask: model-evaluation-2
model:
componentInputArtifact: pipelinechannel--model-upload-2-model
parameters:
dataset_paths:
componentInputParameter: pipelinechannel--tabular-stats-and-example-gen-test_split_json
dataset_type:
runtimeValue:
constant: tf-record
display_name:
runtimeValue:
constant: AutoML Tabular
problem_type:
componentInputParameter: pipelinechannel--prediction_type
taskInfo:
name: model-evaluation-import-2
inputDefinitions:
artifacts:
pipelinechannel--automl-tabular-ensemble-2-explanation_metadata_artifact:
artifactType:
schemaTitle: system.Artifact
schemaVersion: 0.0.1
pipelinechannel--automl-tabular-ensemble-2-unmanaged_container_model:
artifactType:
schemaTitle: google.UnmanagedContainerModel
schemaVersion: 0.0.1
pipelinechannel--model-upload-2-model:
artifactType:
schemaTitle: google.VertexModel
schemaVersion: 0.0.1
parameters:
pipelinechannel--automl-tabular-ensemble-2-explanation_parameters:
parameterType: STRUCT
pipelinechannel--bool-identity-2-Output:
parameterType: STRING
pipelinechannel--bool-identity-3-Output:
parameterType: STRING
pipelinechannel--dataflow_service_account:
parameterType: STRING
pipelinechannel--dataflow_subnetwork:
parameterType: STRING
pipelinechannel--dataflow_use_public_ips:
parameterType: BOOLEAN
pipelinechannel--encryption_spec_key_name:
parameterType: STRING
pipelinechannel--evaluation_batch_explain_machine_type:
parameterType: STRING
pipelinechannel--evaluation_batch_explain_max_replica_count:
parameterType: NUMBER_INTEGER
pipelinechannel--evaluation_batch_explain_starting_replica_count:
parameterType: NUMBER_INTEGER
pipelinechannel--evaluation_batch_predict_machine_type:
parameterType: STRING
pipelinechannel--evaluation_batch_predict_max_replica_count:
parameterType: NUMBER_INTEGER
pipelinechannel--evaluation_batch_predict_starting_replica_count:
parameterType: NUMBER_INTEGER
pipelinechannel--evaluation_dataflow_disk_size_gb:
parameterType: NUMBER_INTEGER
pipelinechannel--evaluation_dataflow_machine_type:
parameterType: STRING
pipelinechannel--evaluation_dataflow_max_num_workers:
parameterType: NUMBER_INTEGER
pipelinechannel--evaluation_dataflow_starting_num_workers:
parameterType: NUMBER_INTEGER
pipelinechannel--location:
parameterType: STRING
pipelinechannel--prediction_type:
parameterType: STRING
pipelinechannel--project:
parameterType: STRING
pipelinechannel--root_dir:
parameterType: STRING
pipelinechannel--string-not-empty-Output:
parameterType: STRING
pipelinechannel--tabular-stats-and-example-gen-downsampled_test_split_json:
parameterType: LIST
pipelinechannel--tabular-stats-and-example-gen-test_split_json:
parameterType: LIST
pipelinechannel--target_column:
parameterType: STRING
outputDefinitions:
artifacts:
feature-attribution-2-feature_attributions:
artifactType:
schemaTitle: system.Metrics
schemaVersion: 0.0.1
model-evaluation-2-evaluation_metrics:
artifactType:
schemaTitle: system.Metrics
schemaVersion: 0.0.1
comp-condition-7:
dag:
outputs:
artifacts:
feature-attribution-3-feature_attributions:
artifactSelectors:
- outputArtifactKey: feature-attribution-3-feature_attributions
producerSubtask: condition-8
model-evaluation-3-evaluation_metrics:
artifactSelectors:
- outputArtifactKey: model-evaluation-3-evaluation_metrics
producerSubtask: condition-8
tasks:
automl-tabular-ensemble-3:
cachingOptions:
enableCache: true
componentRef:
name: comp-automl-tabular-ensemble-3
dependentTasks:
- automl-tabular-stage-1-tuner-2
- automl-tabular-transform-2
inputs:
artifacts:
dataset_schema:
componentInputArtifact: pipelinechannel--tabular-stats-and-example-gen-dataset_schema
instance_baseline:
componentInputArtifact: pipelinechannel--tabular-stats-and-example-gen-instance_baseline
metadata:
componentInputArtifact: pipelinechannel--tabular-stats-and-example-gen-metadata
transform_output:
taskOutputArtifact:
outputArtifactKey: transform_output
producerTask: automl-tabular-transform-2
tuning_result_input:
taskOutputArtifact:
outputArtifactKey: tuning_result_output
producerTask: automl-tabular-stage-1-tuner-2
warmup_data:
componentInputArtifact: pipelinechannel--tabular-stats-and-example-gen-eval_split
parameters:
encryption_spec_key_name:
componentInputParameter: pipelinechannel--encryption_spec_key_name
export_additional_model_without_custom_ops:
componentInputParameter: pipelinechannel--export_additional_model_without_custom_ops
location:
componentInputParameter: pipelinechannel--location
project:
componentInputParameter: pipelinechannel--project
root_dir:
componentInputParameter: pipelinechannel--root_dir
taskInfo:
name: automl-tabular-ensemble-3
automl-tabular-infra-validator-3:
cachingOptions:
enableCache: true
componentRef:
name: comp-automl-tabular-infra-validator-3
dependentTasks:
- automl-tabular-ensemble-3
inputs:
artifacts:
unmanaged_container_model:
taskOutputArtifact:
outputArtifactKey: unmanaged_container_model
producerTask: automl-tabular-ensemble-3
taskInfo:
name: automl-tabular-infra-validator-3
automl-tabular-stage-1-tuner-2:
cachingOptions:
enableCache: true
componentRef:
name: comp-automl-tabular-stage-1-tuner-2
dependentTasks:
- automl-tabular-transform-2
inputs:
artifacts:
materialized_eval_split:
taskOutputArtifact:
outputArtifactKey: materialized_eval_split
producerTask: automl-tabular-transform-2
materialized_train_split:
taskOutputArtifact:
outputArtifactKey: materialized_train_split
producerTask: automl-tabular-transform-2
metadata:
componentInputArtifact: pipelinechannel--tabular-stats-and-example-gen-metadata
transform_output:
taskOutputArtifact:
outputArtifactKey: transform_output
producerTask: automl-tabular-transform-2
parameters:
deadline_hours:
componentInputParameter: pipelinechannel--calculate-training-parameters-2-distill_stage_1_deadline_hours
disable_early_stopping:
componentInputParameter: pipelinechannel--disable_early_stopping
encryption_spec_key_name:
componentInputParameter: pipelinechannel--encryption_spec_key_name
location:
componentInputParameter: pipelinechannel--location
num_parallel_trials:
componentInputParameter: pipelinechannel--stage_1_num_parallel_trials
num_selected_trials:
runtimeValue:
constant: 1.0
project:
componentInputParameter: pipelinechannel--project
reduce_search_space_mode:
componentInputParameter: pipelinechannel--calculate-training-parameters-2-reduce_search_space_mode
root_dir:
componentInputParameter: pipelinechannel--root_dir
run_distillation:
runtimeValue:
constant: 1.0
single_run_max_secs:
componentInputParameter: pipelinechannel--calculate-training-parameters-2-stage_1_single_run_max_secs
worker_pool_specs_override_json:
componentInputParameter: pipelinechannel--stage_1_tuner_worker_pool_specs_override
taskInfo:
name: automl-tabular-stage-1-tuner-2
automl-tabular-transform-2:
cachingOptions:
enableCache: true
componentRef:
name: comp-automl-tabular-transform-2
dependentTasks:
- write-bp-result-path
- write-bp-result-path-2
inputs:
artifacts:
dataset_schema:
componentInputArtifact: pipelinechannel--tabular-stats-and-example-gen-dataset_schema
eval_split:
taskOutputArtifact:
outputArtifactKey: result
producerTask: write-bp-result-path-2
metadata:
componentInputArtifact: pipelinechannel--tabular-stats-and-example-gen-metadata
test_split:
componentInputArtifact: pipelinechannel--tabular-stats-and-example-gen-test_split
train_split:
taskOutputArtifact:
outputArtifactKey: result
producerTask: write-bp-result-path
parameters:
dataflow_disk_size_gb:
componentInputParameter: pipelinechannel--transform_dataflow_disk_size_gb
dataflow_machine_type:
componentInputParameter: pipelinechannel--transform_dataflow_machine_type
dataflow_max_num_workers:
componentInputParameter: pipelinechannel--transform_dataflow_max_num_workers
dataflow_service_account:
componentInputParameter: pipelinechannel--dataflow_service_account
encryption_spec_key_name:
componentInputParameter: pipelinechannel--encryption_spec_key_name
location:
componentInputParameter: pipelinechannel--location
project:
componentInputParameter: pipelinechannel--project
root_dir:
componentInputParameter: pipelinechannel--root_dir
taskInfo:
name: automl-tabular-transform-2
condition-8:
componentRef:
name: comp-condition-8
dependentTasks:
- automl-tabular-ensemble-3
- model-upload-3
inputs:
artifacts:
pipelinechannel--automl-tabular-ensemble-3-explanation_metadata_artifact:
taskOutputArtifact:
outputArtifactKey: explanation_metadata_artifact
producerTask: automl-tabular-ensemble-3
pipelinechannel--automl-tabular-ensemble-3-unmanaged_container_model:
taskOutputArtifact:
outputArtifactKey: unmanaged_container_model
producerTask: automl-tabular-ensemble-3
pipelinechannel--model-upload-3-model:
taskOutputArtifact:
outputArtifactKey: model
producerTask: model-upload-3
parameters:
pipelinechannel--automl-tabular-ensemble-3-explanation_parameters:
taskOutputParameter:
outputParameterKey: explanation_parameters
producerTask: automl-tabular-ensemble-3
pipelinechannel--bool-identity-2-Output:
componentInputParameter: pipelinechannel--bool-identity-2-Output
pipelinechannel--bool-identity-3-Output:
componentInputParameter: pipelinechannel--bool-identity-3-Output
pipelinechannel--dataflow_service_account:
componentInputParameter: pipelinechannel--dataflow_service_account
pipelinechannel--dataflow_subnetwork:
componentInputParameter: pipelinechannel--dataflow_subnetwork
pipelinechannel--dataflow_use_public_ips:
componentInputParameter: pipelinechannel--dataflow_use_public_ips
pipelinechannel--encryption_spec_key_name:
componentInputParameter: pipelinechannel--encryption_spec_key_name
pipelinechannel--evaluation_batch_explain_machine_type:
componentInputParameter: pipelinechannel--evaluation_batch_explain_machine_type
pipelinechannel--evaluation_batch_explain_max_replica_count:
componentInputParameter: pipelinechannel--evaluation_batch_explain_max_replica_count
pipelinechannel--evaluation_batch_explain_starting_replica_count:
componentInputParameter: pipelinechannel--evaluation_batch_explain_starting_replica_count
pipelinechannel--evaluation_batch_predict_machine_type:
componentInputParameter: pipelinechannel--evaluation_batch_predict_machine_type
pipelinechannel--evaluation_batch_predict_max_replica_count:
componentInputParameter: pipelinechannel--evaluation_batch_predict_max_replica_count
pipelinechannel--evaluation_batch_predict_starting_replica_count:
componentInputParameter: pipelinechannel--evaluation_batch_predict_starting_replica_count
pipelinechannel--evaluation_dataflow_disk_size_gb:
componentInputParameter: pipelinechannel--evaluation_dataflow_disk_size_gb
pipelinechannel--evaluation_dataflow_machine_type:
componentInputParameter: pipelinechannel--evaluation_dataflow_machine_type
pipelinechannel--evaluation_dataflow_max_num_workers:
componentInputParameter: pipelinechannel--evaluation_dataflow_max_num_workers
pipelinechannel--evaluation_dataflow_starting_num_workers:
componentInputParameter: pipelinechannel--evaluation_dataflow_starting_num_workers
pipelinechannel--location:
componentInputParameter: pipelinechannel--location
pipelinechannel--prediction_type:
componentInputParameter: pipelinechannel--prediction_type
pipelinechannel--project:
componentInputParameter: pipelinechannel--project
pipelinechannel--root_dir:
componentInputParameter: pipelinechannel--root_dir
pipelinechannel--string-not-empty-Output:
componentInputParameter: pipelinechannel--string-not-empty-Output
pipelinechannel--tabular-stats-and-example-gen-downsampled_test_split_json:
componentInputParameter: pipelinechannel--tabular-stats-and-example-gen-downsampled_test_split_json
pipelinechannel--tabular-stats-and-example-gen-test_split_json:
componentInputParameter: pipelinechannel--tabular-stats-and-example-gen-test_split_json
pipelinechannel--target_column:
componentInputParameter: pipelinechannel--target_column
taskInfo:
name: is-evaluation
triggerPolicy:
condition: inputs.parameter_values['pipelinechannel--bool-identity-2-Output']
== 'true'
model-batch-predict-3:
cachingOptions:
enableCache: true
componentRef:
name: comp-model-batch-predict-3
dependentTasks:
- read-input-uri
inputs:
artifacts:
unmanaged_container_model:
componentInputArtifact: pipelinechannel--automl-tabular-ensemble-2-unmanaged_container_model
parameters:
encryption_spec_key_name:
componentInputParameter: pipelinechannel--encryption_spec_key_name
gcs_destination_output_uri_prefix:
componentInputParameter: pipelinechannel--root_dir
gcs_source_uris:
taskOutputParameter:
outputParameterKey: Output
producerTask: read-input-uri
instances_format:
runtimeValue:
constant: tf-record
job_display_name:
runtimeValue:
constant: batch-predict-train-split
location:
componentInputParameter: pipelinechannel--location
machine_type:
componentInputParameter: pipelinechannel--distill_batch_predict_machine_type
max_replica_count:
componentInputParameter: pipelinechannel--distill_batch_predict_max_replica_count
predictions_format:
runtimeValue:
constant: tf-record
project:
componentInputParameter: pipelinechannel--project
starting_replica_count:
componentInputParameter: pipelinechannel--distill_batch_predict_starting_replica_count
taskInfo:
name: model-batch-predict-3
model-batch-predict-4:
cachingOptions:
enableCache: true
componentRef:
name: comp-model-batch-predict-4
dependentTasks:
- read-input-uri-2
inputs:
artifacts:
unmanaged_container_model:
componentInputArtifact: pipelinechannel--automl-tabular-ensemble-2-unmanaged_container_model
parameters:
encryption_spec_key_name:
componentInputParameter: pipelinechannel--encryption_spec_key_name
gcs_destination_output_uri_prefix:
componentInputParameter: pipelinechannel--root_dir
gcs_source_uris:
taskOutputParameter:
outputParameterKey: Output
producerTask: read-input-uri-2
instances_format:
runtimeValue:
constant: tf-record
job_display_name:
runtimeValue:
constant: batch-predict-eval-split
location:
componentInputParameter: pipelinechannel--location
machine_type:
componentInputParameter: pipelinechannel--distill_batch_predict_machine_type
max_replica_count:
componentInputParameter: pipelinechannel--distill_batch_predict_max_replica_count
predictions_format:
runtimeValue:
constant: tf-record
project:
componentInputParameter: pipelinechannel--project
starting_replica_count:
componentInputParameter: pipelinechannel--distill_batch_predict_starting_replica_count
taskInfo:
name: model-batch-predict-4
model-upload-3:
cachingOptions:
enableCache: true
componentRef:
name: comp-model-upload-3
dependentTasks:
- automl-tabular-ensemble-3
- automl-tabular-infra-validator-3
inputs:
artifacts:
explanation_metadata_artifact:
taskOutputArtifact:
outputArtifactKey: explanation_metadata_artifact
producerTask: automl-tabular-ensemble-3
unmanaged_container_model:
taskOutputArtifact:
outputArtifactKey: unmanaged_container_model
producerTask: automl-tabular-ensemble-3
parameters:
display_name:
runtimeValue:
constant: automl-tabular-distill-model-upload-{{$.pipeline_job_uuid}}-{{$.pipeline_task_uuid}}
encryption_spec_key_name:
componentInputParameter: pipelinechannel--encryption_spec_key_name
explanation_parameters:
taskOutputParameter:
outputParameterKey: explanation_parameters
producerTask: automl-tabular-ensemble-3
location:
componentInputParameter: pipelinechannel--location
project:
componentInputParameter: pipelinechannel--project
taskInfo:
name: model-upload-3
read-input-uri:
cachingOptions:
enableCache: true
componentRef:
name: comp-read-input-uri
inputs:
artifacts:
split_uri:
componentInputArtifact: pipelinechannel--tabular-stats-and-example-gen-train_split
taskInfo:
name: read-input-uri
read-input-uri-2:
cachingOptions:
enableCache: true
componentRef:
name: comp-read-input-uri-2
inputs:
artifacts:
split_uri:
componentInputArtifact: pipelinechannel--tabular-stats-and-example-gen-eval_split
taskInfo:
name: read-input-uri-2
write-bp-result-path:
cachingOptions:
enableCache: true
componentRef:
name: comp-write-bp-result-path
dependentTasks:
- model-batch-predict-3
inputs:
artifacts:
bp_job:
taskOutputArtifact:
outputArtifactKey: batchpredictionjob
producerTask: model-batch-predict-3
taskInfo:
name: write-bp-result-path
write-bp-result-path-2:
cachingOptions:
enableCache: true
componentRef:
name: comp-write-bp-result-path-2
dependentTasks:
- model-batch-predict-4
inputs:
artifacts:
bp_job:
taskOutputArtifact:
outputArtifactKey: batchpredictionjob
producerTask: model-batch-predict-4
taskInfo:
name: write-bp-result-path-2
inputDefinitions:
artifacts:
pipelinechannel--automl-tabular-ensemble-2-unmanaged_container_model:
artifactType:
schemaTitle: google.UnmanagedContainerModel
schemaVersion: 0.0.1
pipelinechannel--tabular-stats-and-example-gen-dataset_schema:
artifactType:
schemaTitle: system.Artifact
schemaVersion: 0.0.1
pipelinechannel--tabular-stats-and-example-gen-eval_split:
artifactType:
schemaTitle: system.Dataset
schemaVersion: 0.0.1
pipelinechannel--tabular-stats-and-example-gen-instance_baseline:
artifactType:
schemaTitle: system.Artifact
schemaVersion: 0.0.1
pipelinechannel--tabular-stats-and-example-gen-metadata:
artifactType:
schemaTitle: system.Artifact
schemaVersion: 0.0.1
pipelinechannel--tabular-stats-and-example-gen-test_split:
artifactType:
schemaTitle: system.Dataset
schemaVersion: 0.0.1
pipelinechannel--tabular-stats-and-example-gen-train_split:
artifactType:
schemaTitle: system.Dataset
schemaVersion: 0.0.1
parameters:
pipelinechannel--bool-identity-2-Output:
parameterType: STRING
pipelinechannel--bool-identity-3-Output:
parameterType: STRING
pipelinechannel--calculate-training-parameters-2-distill_stage_1_deadline_hours:
parameterType: NUMBER_DOUBLE
pipelinechannel--calculate-training-parameters-2-reduce_search_space_mode:
parameterType: STRING
pipelinechannel--calculate-training-parameters-2-stage_1_single_run_max_secs:
parameterType: NUMBER_INTEGER
pipelinechannel--dataflow_service_account:
parameterType: STRING
pipelinechannel--dataflow_subnetwork:
parameterType: STRING
pipelinechannel--dataflow_use_public_ips:
parameterType: BOOLEAN
pipelinechannel--disable_early_stopping:
parameterType: BOOLEAN
pipelinechannel--distill_batch_predict_machine_type:
parameterType: STRING
pipelinechannel--distill_batch_predict_max_replica_count:
parameterType: NUMBER_INTEGER
pipelinechannel--distill_batch_predict_starting_replica_count:
parameterType: NUMBER_INTEGER
pipelinechannel--encryption_spec_key_name:
parameterType: STRING
pipelinechannel--evaluation_batch_explain_machine_type:
parameterType: STRING
pipelinechannel--evaluation_batch_explain_max_replica_count:
parameterType: NUMBER_INTEGER
pipelinechannel--evaluation_batch_explain_starting_replica_count:
parameterType: NUMBER_INTEGER
pipelinechannel--evaluation_batch_predict_machine_type:
parameterType: STRING
pipelinechannel--evaluation_batch_predict_max_replica_count:
parameterType: NUMBER_INTEGER
pipelinechannel--evaluation_batch_predict_starting_replica_count:
parameterType: NUMBER_INTEGER
pipelinechannel--evaluation_dataflow_disk_size_gb:
parameterType: NUMBER_INTEGER
pipelinechannel--evaluation_dataflow_machine_type:
parameterType: STRING
pipelinechannel--evaluation_dataflow_max_num_workers:
parameterType: NUMBER_INTEGER
pipelinechannel--evaluation_dataflow_starting_num_workers:
parameterType: NUMBER_INTEGER
pipelinechannel--export_additional_model_without_custom_ops:
parameterType: BOOLEAN
pipelinechannel--location:
parameterType: STRING
pipelinechannel--prediction_type:
parameterType: STRING
pipelinechannel--project:
parameterType: STRING
pipelinechannel--root_dir:
parameterType: STRING
pipelinechannel--stage_1_num_parallel_trials:
parameterType: NUMBER_INTEGER
pipelinechannel--stage_1_tuner_worker_pool_specs_override:
parameterType: LIST
pipelinechannel--string-not-empty-Output:
parameterType: STRING
pipelinechannel--tabular-stats-and-example-gen-downsampled_test_split_json:
parameterType: LIST
pipelinechannel--tabular-stats-and-example-gen-test_split_json:
parameterType: LIST
pipelinechannel--target_column:
parameterType: STRING
pipelinechannel--transform_dataflow_disk_size_gb:
parameterType: NUMBER_INTEGER
pipelinechannel--transform_dataflow_machine_type:
parameterType: STRING
pipelinechannel--transform_dataflow_max_num_workers:
parameterType: NUMBER_INTEGER
outputDefinitions:
artifacts:
feature-attribution-3-feature_attributions:
artifactType:
schemaTitle: system.Metrics
schemaVersion: 0.0.1
model-evaluation-3-evaluation_metrics:
artifactType:
schemaTitle: system.Metrics
schemaVersion: 0.0.1
comp-condition-8:
dag:
outputs:
artifacts:
feature-attribution-3-feature_attributions:
artifactSelectors:
- outputArtifactKey: feature_attributions
producerSubtask: feature-attribution-3
model-evaluation-3-evaluation_metrics:
artifactSelectors:
- outputArtifactKey: evaluation_metrics
producerSubtask: model-evaluation-3
tasks:
feature-attribution-3:
cachingOptions:
enableCache: true
componentRef:
name: comp-feature-attribution-3
dependentTasks:
- model-batch-explanation-3
inputs:
artifacts:
predictions_gcs_source:
taskOutputArtifact:
outputArtifactKey: gcs_output_directory
producerTask: model-batch-explanation-3
parameters:
dataflow_disk_size:
componentInputParameter: pipelinechannel--evaluation_dataflow_disk_size_gb
dataflow_machine_type:
componentInputParameter: pipelinechannel--evaluation_dataflow_machine_type
dataflow_max_workers_num:
componentInputParameter: pipelinechannel--evaluation_dataflow_max_num_workers
dataflow_service_account:
componentInputParameter: pipelinechannel--dataflow_service_account
dataflow_subnetwork:
componentInputParameter: pipelinechannel--dataflow_subnetwork
dataflow_use_public_ips:
componentInputParameter: pipelinechannel--dataflow_use_public_ips
dataflow_workers_num:
componentInputParameter: pipelinechannel--evaluation_dataflow_starting_num_workers
encryption_spec_key_name:
componentInputParameter: pipelinechannel--encryption_spec_key_name
location:
componentInputParameter: pipelinechannel--location
predictions_format:
runtimeValue:
constant: jsonl
project:
componentInputParameter: pipelinechannel--project
root_dir:
componentInputParameter: pipelinechannel--root_dir
taskInfo:
name: feature-attribution-3
model-batch-explanation-3:
cachingOptions:
enableCache: true
componentRef:
name: comp-model-batch-explanation-3
inputs:
artifacts:
explanation_metadata_artifact:
componentInputArtifact: pipelinechannel--automl-tabular-ensemble-3-explanation_metadata_artifact
unmanaged_container_model:
componentInputArtifact: pipelinechannel--automl-tabular-ensemble-3-unmanaged_container_model
parameters:
encryption_spec_key_name:
componentInputParameter: pipelinechannel--encryption_spec_key_name
explanation_parameters:
componentInputParameter: pipelinechannel--automl-tabular-ensemble-3-explanation_parameters
gcs_destination_output_uri_prefix:
componentInputParameter: pipelinechannel--root_dir
gcs_source_uris:
componentInputParameter: pipelinechannel--tabular-stats-and-example-gen-downsampled_test_split_json
generate_explanation:
runtimeValue:
constant: 1.0
instances_format:
runtimeValue:
constant: tf-record
job_display_name:
runtimeValue:
constant: batch-explain-evaluation-{{$.pipeline_job_uuid}}-{{$.pipeline_task_uuid}}
location:
componentInputParameter: pipelinechannel--location
machine_type:
componentInputParameter: pipelinechannel--evaluation_batch_explain_machine_type
max_replica_count:
componentInputParameter: pipelinechannel--evaluation_batch_explain_max_replica_count
predictions_format:
runtimeValue:
constant: jsonl
project:
componentInputParameter: pipelinechannel--project
starting_replica_count:
componentInputParameter: pipelinechannel--evaluation_batch_explain_starting_replica_count
taskInfo:
name: model-batch-explanation-3
model-batch-predict-5:
cachingOptions:
enableCache: true
componentRef:
name: comp-model-batch-predict-5
inputs:
artifacts:
unmanaged_container_model:
componentInputArtifact: pipelinechannel--automl-tabular-ensemble-3-unmanaged_container_model
parameters:
encryption_spec_key_name:
componentInputParameter: pipelinechannel--encryption_spec_key_name
gcs_destination_output_uri_prefix:
componentInputParameter: pipelinechannel--root_dir
gcs_source_uris:
componentInputParameter: pipelinechannel--tabular-stats-and-example-gen-test_split_json
instances_format:
runtimeValue:
constant: tf-record
job_display_name:
runtimeValue:
constant: batch-predict-evaluation-{{$.pipeline_job_uuid}}-{{$.pipeline_task_uuid}}
location:
componentInputParameter: pipelinechannel--location
machine_type:
componentInputParameter: pipelinechannel--evaluation_batch_predict_machine_type
max_replica_count:
componentInputParameter: pipelinechannel--evaluation_batch_predict_max_replica_count
predictions_format:
runtimeValue:
constant: jsonl
project:
componentInputParameter: pipelinechannel--project
starting_replica_count:
componentInputParameter: pipelinechannel--evaluation_batch_predict_starting_replica_count
taskInfo:
name: model-batch-predict-5
model-evaluation-3:
cachingOptions:
enableCache: true
componentRef:
name: comp-model-evaluation-3
dependentTasks:
- model-batch-predict-5
inputs:
artifacts:
batch_prediction_job:
taskOutputArtifact:
outputArtifactKey: batchpredictionjob
producerTask: model-batch-predict-5
parameters:
dataflow_disk_size:
componentInputParameter: pipelinechannel--evaluation_dataflow_disk_size_gb
dataflow_machine_type:
componentInputParameter: pipelinechannel--evaluation_dataflow_machine_type
dataflow_max_workers_num:
componentInputParameter: pipelinechannel--evaluation_dataflow_max_num_workers
dataflow_service_account:
componentInputParameter: pipelinechannel--dataflow_service_account
dataflow_subnetwork:
componentInputParameter: pipelinechannel--dataflow_subnetwork
dataflow_use_public_ips:
componentInputParameter: pipelinechannel--dataflow_use_public_ips
dataflow_workers_num:
componentInputParameter: pipelinechannel--evaluation_dataflow_starting_num_workers
encryption_spec_key_name:
componentInputParameter: pipelinechannel--encryption_spec_key_name
ground_truth_column:
componentInputParameter: pipelinechannel--target_column
ground_truth_format:
runtimeValue:
constant: jsonl
location:
componentInputParameter: pipelinechannel--location
prediction_label_column:
runtimeValue:
constant: ''
prediction_score_column:
runtimeValue:
constant: ''
predictions_format:
runtimeValue:
constant: jsonl
problem_type:
componentInputParameter: pipelinechannel--prediction_type
project:
componentInputParameter: pipelinechannel--project
root_dir:
componentInputParameter: pipelinechannel--root_dir
taskInfo:
name: model-evaluation-3
model-evaluation-import-3:
cachingOptions:
enableCache: true
componentRef:
name: comp-model-evaluation-import-3
dependentTasks:
- feature-attribution-3
- model-evaluation-3
inputs:
artifacts:
feature_attributions:
taskOutputArtifact:
outputArtifactKey: feature_attributions
producerTask: feature-attribution-3
metrics:
taskOutputArtifact:
outputArtifactKey: evaluation_metrics
producerTask: model-evaluation-3
model:
componentInputArtifact: pipelinechannel--model-upload-3-model
parameters:
dataset_paths:
componentInputParameter: pipelinechannel--tabular-stats-and-example-gen-test_split_json
dataset_type:
runtimeValue:
constant: tf-record
display_name:
runtimeValue:
constant: AutoML Tabular
problem_type:
componentInputParameter: pipelinechannel--prediction_type
taskInfo:
name: model-evaluation-import-3
inputDefinitions:
artifacts:
pipelinechannel--automl-tabular-ensemble-3-explanation_metadata_artifact:
artifactType:
schemaTitle: system.Artifact
schemaVersion: 0.0.1
pipelinechannel--automl-tabular-ensemble-3-unmanaged_container_model:
artifactType:
schemaTitle: google.UnmanagedContainerModel
schemaVersion: 0.0.1
pipelinechannel--model-upload-3-model:
artifactType:
schemaTitle: google.VertexModel
schemaVersion: 0.0.1
parameters:
pipelinechannel--automl-tabular-ensemble-3-explanation_parameters:
parameterType: STRUCT
pipelinechannel--bool-identity-2-Output:
parameterType: STRING
pipelinechannel--bool-identity-3-Output:
parameterType: STRING
pipelinechannel--dataflow_service_account:
parameterType: STRING
pipelinechannel--dataflow_subnetwork:
parameterType: STRING
pipelinechannel--dataflow_use_public_ips:
parameterType: BOOLEAN
pipelinechannel--encryption_spec_key_name:
parameterType: STRING
pipelinechannel--evaluation_batch_explain_machine_type:
parameterType: STRING
pipelinechannel--evaluation_batch_explain_max_replica_count:
parameterType: NUMBER_INTEGER
pipelinechannel--evaluation_batch_explain_starting_replica_count:
parameterType: NUMBER_INTEGER
pipelinechannel--evaluation_batch_predict_machine_type:
parameterType: STRING
pipelinechannel--evaluation_batch_predict_max_replica_count:
parameterType: NUMBER_INTEGER
pipelinechannel--evaluation_batch_predict_starting_replica_count:
parameterType: NUMBER_INTEGER
pipelinechannel--evaluation_dataflow_disk_size_gb:
parameterType: NUMBER_INTEGER
pipelinechannel--evaluation_dataflow_machine_type:
parameterType: STRING
pipelinechannel--evaluation_dataflow_max_num_workers:
parameterType: NUMBER_INTEGER
pipelinechannel--evaluation_dataflow_starting_num_workers:
parameterType: NUMBER_INTEGER
pipelinechannel--location:
parameterType: STRING
pipelinechannel--prediction_type:
parameterType: STRING
pipelinechannel--project:
parameterType: STRING
pipelinechannel--root_dir:
parameterType: STRING
pipelinechannel--string-not-empty-Output:
parameterType: STRING
pipelinechannel--tabular-stats-and-example-gen-downsampled_test_split_json:
parameterType: LIST
pipelinechannel--tabular-stats-and-example-gen-test_split_json:
parameterType: LIST
pipelinechannel--target_column:
parameterType: STRING
outputDefinitions:
artifacts:
feature-attribution-3-feature_attributions:
artifactType:
schemaTitle: system.Metrics
schemaVersion: 0.0.1
model-evaluation-3-evaluation_metrics:
artifactType:
schemaTitle: system.Metrics
schemaVersion: 0.0.1
comp-exit-handler-1:
dag:
outputs:
artifacts:
feature-attribution-2-feature_attributions:
artifactSelectors:
- outputArtifactKey: feature-attribution-2-feature_attributions
producerSubtask: condition-4
feature-attribution-3-feature_attributions:
artifactSelectors:
- outputArtifactKey: feature-attribution-3-feature_attributions
producerSubtask: condition-4
feature-attribution-feature_attributions:
artifactSelectors:
- outputArtifactKey: feature-attribution-feature_attributions
producerSubtask: condition-2
model-evaluation-2-evaluation_metrics:
artifactSelectors:
- outputArtifactKey: model-evaluation-2-evaluation_metrics
producerSubtask: condition-4
model-evaluation-3-evaluation_metrics:
artifactSelectors:
- outputArtifactKey: model-evaluation-3-evaluation_metrics
producerSubtask: condition-4
model-evaluation-evaluation_metrics:
artifactSelectors:
- outputArtifactKey: model-evaluation-evaluation_metrics
producerSubtask: condition-2
tasks:
automl-tabular-transform:
cachingOptions:
enableCache: true
componentRef:
name: comp-automl-tabular-transform
dependentTasks:
- tabular-stats-and-example-gen
inputs:
artifacts:
dataset_schema:
taskOutputArtifact:
outputArtifactKey: dataset_schema
producerTask: tabular-stats-and-example-gen
eval_split:
taskOutputArtifact:
outputArtifactKey: eval_split
producerTask: tabular-stats-and-example-gen
metadata:
taskOutputArtifact:
outputArtifactKey: metadata
producerTask: tabular-stats-and-example-gen
test_split:
taskOutputArtifact:
outputArtifactKey: test_split
producerTask: tabular-stats-and-example-gen
train_split:
taskOutputArtifact:
outputArtifactKey: train_split
producerTask: tabular-stats-and-example-gen
parameters:
dataflow_disk_size_gb:
componentInputParameter: pipelinechannel--transform_dataflow_disk_size_gb
dataflow_machine_type:
componentInputParameter: pipelinechannel--transform_dataflow_machine_type
dataflow_max_num_workers:
componentInputParameter: pipelinechannel--transform_dataflow_max_num_workers
dataflow_service_account:
componentInputParameter: pipelinechannel--dataflow_service_account
dataflow_subnetwork:
componentInputParameter: pipelinechannel--dataflow_subnetwork
dataflow_use_public_ips:
componentInputParameter: pipelinechannel--dataflow_use_public_ips
encryption_spec_key_name:
componentInputParameter: pipelinechannel--encryption_spec_key_name
location:
componentInputParameter: pipelinechannel--location
project:
componentInputParameter: pipelinechannel--project
root_dir:
componentInputParameter: pipelinechannel--root_dir
taskInfo:
name: automl-tabular-transform
condition-2:
componentRef:
name: comp-condition-2
dependentTasks:
- automl-tabular-transform
- merge-materialized-splits
- string-not-empty
- tabular-stats-and-example-gen
inputs:
artifacts:
pipelinechannel--automl-tabular-transform-transform_output:
taskOutputArtifact:
outputArtifactKey: transform_output
producerTask: automl-tabular-transform
pipelinechannel--merge-materialized-splits-splits:
taskOutputArtifact:
outputArtifactKey: splits
producerTask: merge-materialized-splits
pipelinechannel--tabular-stats-and-example-gen-dataset_schema:
taskOutputArtifact:
outputArtifactKey: dataset_schema
producerTask: tabular-stats-and-example-gen
pipelinechannel--tabular-stats-and-example-gen-eval_split:
taskOutputArtifact:
outputArtifactKey: eval_split
producerTask: tabular-stats-and-example-gen
pipelinechannel--tabular-stats-and-example-gen-instance_baseline:
taskOutputArtifact:
outputArtifactKey: instance_baseline
producerTask: tabular-stats-and-example-gen
pipelinechannel--tabular-stats-and-example-gen-metadata:
taskOutputArtifact:
outputArtifactKey: metadata
producerTask: tabular-stats-and-example-gen
parameters:
pipelinechannel--cv_trainer_worker_pool_specs_override:
componentInputParameter: pipelinechannel--cv_trainer_worker_pool_specs_override
pipelinechannel--dataflow_service_account:
componentInputParameter: pipelinechannel--dataflow_service_account
pipelinechannel--dataflow_subnetwork:
componentInputParameter: pipelinechannel--dataflow_subnetwork
pipelinechannel--dataflow_use_public_ips:
componentInputParameter: pipelinechannel--dataflow_use_public_ips
pipelinechannel--encryption_spec_key_name:
componentInputParameter: pipelinechannel--encryption_spec_key_name
pipelinechannel--evaluation_batch_explain_machine_type:
componentInputParameter: pipelinechannel--evaluation_batch_explain_machine_type
pipelinechannel--evaluation_batch_explain_max_replica_count:
componentInputParameter: pipelinechannel--evaluation_batch_explain_max_replica_count
pipelinechannel--evaluation_batch_explain_starting_replica_count:
componentInputParameter: pipelinechannel--evaluation_batch_explain_starting_replica_count
pipelinechannel--evaluation_batch_predict_machine_type:
componentInputParameter: pipelinechannel--evaluation_batch_predict_machine_type
pipelinechannel--evaluation_batch_predict_max_replica_count:
componentInputParameter: pipelinechannel--evaluation_batch_predict_max_replica_count
pipelinechannel--evaluation_batch_predict_starting_replica_count:
componentInputParameter: pipelinechannel--evaluation_batch_predict_starting_replica_count
pipelinechannel--evaluation_dataflow_disk_size_gb:
componentInputParameter: pipelinechannel--evaluation_dataflow_disk_size_gb
pipelinechannel--evaluation_dataflow_machine_type:
componentInputParameter: pipelinechannel--evaluation_dataflow_machine_type
pipelinechannel--evaluation_dataflow_max_num_workers:
componentInputParameter: pipelinechannel--evaluation_dataflow_max_num_workers
pipelinechannel--evaluation_dataflow_starting_num_workers:
componentInputParameter: pipelinechannel--evaluation_dataflow_starting_num_workers
pipelinechannel--export_additional_model_without_custom_ops:
componentInputParameter: pipelinechannel--export_additional_model_without_custom_ops
pipelinechannel--fast_testing:
componentInputParameter: pipelinechannel--fast_testing
pipelinechannel--location:
componentInputParameter: pipelinechannel--location
pipelinechannel--model_description:
componentInputParameter: pipelinechannel--model_description
pipelinechannel--prediction_type:
componentInputParameter: pipelinechannel--prediction_type
pipelinechannel--project:
componentInputParameter: pipelinechannel--project
pipelinechannel--root_dir:
componentInputParameter: pipelinechannel--root_dir
pipelinechannel--run_distillation:
componentInputParameter: pipelinechannel--run_distillation
pipelinechannel--run_evaluation:
componentInputParameter: pipelinechannel--run_evaluation
pipelinechannel--set-optional-inputs-model_display_name:
componentInputParameter: pipelinechannel--set-optional-inputs-model_display_name
pipelinechannel--stage_1_num_parallel_trials:
componentInputParameter: pipelinechannel--stage_1_num_parallel_trials
pipelinechannel--stage_1_tuning_result_artifact_uri:
componentInputParameter: pipelinechannel--stage_1_tuning_result_artifact_uri
pipelinechannel--stage_2_num_parallel_trials:
componentInputParameter: pipelinechannel--stage_2_num_parallel_trials
pipelinechannel--stage_2_num_selected_trials:
componentInputParameter: pipelinechannel--stage_2_num_selected_trials
pipelinechannel--string-not-empty-Output:
taskOutputParameter:
outputParameterKey: Output
producerTask: string-not-empty
pipelinechannel--tabular-stats-and-example-gen-downsampled_test_split_json:
taskOutputParameter:
outputParameterKey: downsampled_test_split_json
producerTask: tabular-stats-and-example-gen
pipelinechannel--tabular-stats-and-example-gen-test_split_json:
taskOutputParameter:
outputParameterKey: test_split_json
producerTask: tabular-stats-and-example-gen
pipelinechannel--target_column:
componentInputParameter: pipelinechannel--target_column
pipelinechannel--train_budget_milli_node_hours:
componentInputParameter: pipelinechannel--train_budget_milli_node_hours
taskInfo:
name: stage_1_tuning_result_artifact_uri_not_empty
triggerPolicy:
condition: inputs.parameter_values['pipelinechannel--string-not-empty-Output']
== 'true'
condition-4:
componentRef:
name: comp-condition-4
dependentTasks:
- automl-tabular-transform
- merge-materialized-splits
- string-not-empty
- tabular-stats-and-example-gen
inputs:
artifacts:
pipelinechannel--automl-tabular-transform-materialized_eval_split:
taskOutputArtifact:
outputArtifactKey: materialized_eval_split
producerTask: automl-tabular-transform
pipelinechannel--automl-tabular-transform-materialized_train_split:
taskOutputArtifact:
outputArtifactKey: materialized_train_split
producerTask: automl-tabular-transform
pipelinechannel--automl-tabular-transform-transform_output:
taskOutputArtifact:
outputArtifactKey: transform_output
producerTask: automl-tabular-transform
pipelinechannel--merge-materialized-splits-splits:
taskOutputArtifact:
outputArtifactKey: splits
producerTask: merge-materialized-splits
pipelinechannel--tabular-stats-and-example-gen-dataset_schema:
taskOutputArtifact:
outputArtifactKey: dataset_schema
producerTask: tabular-stats-and-example-gen
pipelinechannel--tabular-stats-and-example-gen-eval_split:
taskOutputArtifact:
outputArtifactKey: eval_split
producerTask: tabular-stats-and-example-gen
pipelinechannel--tabular-stats-and-example-gen-instance_baseline:
taskOutputArtifact:
outputArtifactKey: instance_baseline
producerTask: tabular-stats-and-example-gen
pipelinechannel--tabular-stats-and-example-gen-metadata:
taskOutputArtifact:
outputArtifactKey: metadata
producerTask: tabular-stats-and-example-gen
pipelinechannel--tabular-stats-and-example-gen-test_split:
taskOutputArtifact:
outputArtifactKey: test_split
producerTask: tabular-stats-and-example-gen
pipelinechannel--tabular-stats-and-example-gen-train_split:
taskOutputArtifact:
outputArtifactKey: train_split
producerTask: tabular-stats-and-example-gen
parameters:
pipelinechannel--cv_trainer_worker_pool_specs_override:
componentInputParameter: pipelinechannel--cv_trainer_worker_pool_specs_override
pipelinechannel--dataflow_service_account:
componentInputParameter: pipelinechannel--dataflow_service_account
pipelinechannel--dataflow_subnetwork:
componentInputParameter: pipelinechannel--dataflow_subnetwork
pipelinechannel--dataflow_use_public_ips:
componentInputParameter: pipelinechannel--dataflow_use_public_ips
pipelinechannel--disable_early_stopping:
componentInputParameter: pipelinechannel--disable_early_stopping
pipelinechannel--distill_batch_predict_machine_type:
componentInputParameter: pipelinechannel--distill_batch_predict_machine_type
pipelinechannel--distill_batch_predict_max_replica_count:
componentInputParameter: pipelinechannel--distill_batch_predict_max_replica_count
pipelinechannel--distill_batch_predict_starting_replica_count:
componentInputParameter: pipelinechannel--distill_batch_predict_starting_replica_count
pipelinechannel--encryption_spec_key_name:
componentInputParameter: pipelinechannel--encryption_spec_key_name
pipelinechannel--evaluation_batch_explain_machine_type:
componentInputParameter: pipelinechannel--evaluation_batch_explain_machine_type
pipelinechannel--evaluation_batch_explain_max_replica_count:
componentInputParameter: pipelinechannel--evaluation_batch_explain_max_replica_count
pipelinechannel--evaluation_batch_explain_starting_replica_count:
componentInputParameter: pipelinechannel--evaluation_batch_explain_starting_replica_count
pipelinechannel--evaluation_batch_predict_machine_type:
componentInputParameter: pipelinechannel--evaluation_batch_predict_machine_type
pipelinechannel--evaluation_batch_predict_max_replica_count:
componentInputParameter: pipelinechannel--evaluation_batch_predict_max_replica_count
pipelinechannel--evaluation_batch_predict_starting_replica_count:
componentInputParameter: pipelinechannel--evaluation_batch_predict_starting_replica_count
pipelinechannel--evaluation_dataflow_disk_size_gb:
componentInputParameter: pipelinechannel--evaluation_dataflow_disk_size_gb
pipelinechannel--evaluation_dataflow_machine_type:
componentInputParameter: pipelinechannel--evaluation_dataflow_machine_type
pipelinechannel--evaluation_dataflow_max_num_workers:
componentInputParameter: pipelinechannel--evaluation_dataflow_max_num_workers
pipelinechannel--evaluation_dataflow_starting_num_workers:
componentInputParameter: pipelinechannel--evaluation_dataflow_starting_num_workers
pipelinechannel--export_additional_model_without_custom_ops:
componentInputParameter: pipelinechannel--export_additional_model_without_custom_ops
pipelinechannel--fast_testing:
componentInputParameter: pipelinechannel--fast_testing
pipelinechannel--location:
componentInputParameter: pipelinechannel--location
pipelinechannel--model_description:
componentInputParameter: pipelinechannel--model_description
pipelinechannel--prediction_type:
componentInputParameter: pipelinechannel--prediction_type
pipelinechannel--project:
componentInputParameter: pipelinechannel--project
pipelinechannel--root_dir:
componentInputParameter: pipelinechannel--root_dir
pipelinechannel--run_distillation:
componentInputParameter: pipelinechannel--run_distillation
pipelinechannel--run_evaluation:
componentInputParameter: pipelinechannel--run_evaluation
pipelinechannel--set-optional-inputs-model_display_name:
componentInputParameter: pipelinechannel--set-optional-inputs-model_display_name
pipelinechannel--stage_1_num_parallel_trials:
componentInputParameter: pipelinechannel--stage_1_num_parallel_trials
pipelinechannel--stage_1_tuner_worker_pool_specs_override:
componentInputParameter: pipelinechannel--stage_1_tuner_worker_pool_specs_override
pipelinechannel--stage_2_num_parallel_trials:
componentInputParameter: pipelinechannel--stage_2_num_parallel_trials
pipelinechannel--stage_2_num_selected_trials:
componentInputParameter: pipelinechannel--stage_2_num_selected_trials
pipelinechannel--string-not-empty-Output:
taskOutputParameter:
outputParameterKey: Output
producerTask: string-not-empty
pipelinechannel--study_spec_parameters_override:
componentInputParameter: pipelinechannel--study_spec_parameters_override
pipelinechannel--tabular-stats-and-example-gen-downsampled_test_split_json:
taskOutputParameter:
outputParameterKey: downsampled_test_split_json
producerTask: tabular-stats-and-example-gen
pipelinechannel--tabular-stats-and-example-gen-test_split_json:
taskOutputParameter:
outputParameterKey: test_split_json
producerTask: tabular-stats-and-example-gen
pipelinechannel--target_column:
componentInputParameter: pipelinechannel--target_column
pipelinechannel--train_budget_milli_node_hours:
componentInputParameter: pipelinechannel--train_budget_milli_node_hours
pipelinechannel--transform_dataflow_disk_size_gb:
componentInputParameter: pipelinechannel--transform_dataflow_disk_size_gb
pipelinechannel--transform_dataflow_machine_type:
componentInputParameter: pipelinechannel--transform_dataflow_machine_type
pipelinechannel--transform_dataflow_max_num_workers:
componentInputParameter: pipelinechannel--transform_dataflow_max_num_workers
taskInfo:
name: stage_1_tuning_result_artifact_uri_empty
triggerPolicy:
condition: inputs.parameter_values['pipelinechannel--string-not-empty-Output']
== 'false'
merge-materialized-splits:
cachingOptions:
enableCache: true
componentRef:
name: comp-merge-materialized-splits
dependentTasks:
- automl-tabular-transform
inputs:
artifacts:
split_0:
taskOutputArtifact:
outputArtifactKey: materialized_train_split
producerTask: automl-tabular-transform
split_1:
taskOutputArtifact:
outputArtifactKey: materialized_eval_split
producerTask: automl-tabular-transform
taskInfo:
name: merge-materialized-splits
string-not-empty:
cachingOptions:
enableCache: true
componentRef:
name: comp-string-not-empty
inputs:
parameters:
value:
componentInputParameter: pipelinechannel--stage_1_tuning_result_artifact_uri
taskInfo:
name: string-not-empty
tabular-stats-and-example-gen:
cachingOptions:
enableCache: true
componentRef:
name: comp-tabular-stats-and-example-gen
inputs:
parameters:
additional_experiments_json:
componentInputParameter: pipelinechannel--additional_experiments
data_source_bigquery_table_path:
componentInputParameter: pipelinechannel--set-optional-inputs-data_source_bigquery_table_path
data_source_csv_filenames:
componentInputParameter: pipelinechannel--set-optional-inputs-data_source_csv_filenames
dataflow_disk_size_gb:
componentInputParameter: pipelinechannel--stats_and_example_gen_dataflow_disk_size_gb
dataflow_machine_type:
componentInputParameter: pipelinechannel--stats_and_example_gen_dataflow_machine_type
dataflow_max_num_workers:
componentInputParameter: pipelinechannel--stats_and_example_gen_dataflow_max_num_workers
dataflow_service_account:
componentInputParameter: pipelinechannel--dataflow_service_account
dataflow_subnetwork:
componentInputParameter: pipelinechannel--dataflow_subnetwork
dataflow_use_public_ips:
componentInputParameter: pipelinechannel--dataflow_use_public_ips
enable_probabilistic_inference:
componentInputParameter: pipelinechannel--enable_probabilistic_inference
encryption_spec_key_name:
componentInputParameter: pipelinechannel--encryption_spec_key_name
location:
componentInputParameter: pipelinechannel--location
optimization_objective:
componentInputParameter: pipelinechannel--optimization_objective
optimization_objective_precision_value:
componentInputParameter: pipelinechannel--optimization_objective_precision_value
optimization_objective_recall_value:
componentInputParameter: pipelinechannel--optimization_objective_recall_value
predefined_split_key:
componentInputParameter: pipelinechannel--predefined_split_key
prediction_type:
componentInputParameter: pipelinechannel--prediction_type
project:
componentInputParameter: pipelinechannel--project
quantiles:
componentInputParameter: pipelinechannel--quantiles
root_dir:
componentInputParameter: pipelinechannel--root_dir
run_distillation:
componentInputParameter: pipelinechannel--run_distillation
stratified_split_key:
componentInputParameter: pipelinechannel--stratified_split_key
target_column_name:
componentInputParameter: pipelinechannel--target_column
test_fraction:
componentInputParameter: pipelinechannel--test_fraction
timestamp_split_key:
componentInputParameter: pipelinechannel--timestamp_split_key
training_fraction:
componentInputParameter: pipelinechannel--training_fraction
transformations:
runtimeValue:
constant: '[]'
transformations_path:
componentInputParameter: pipelinechannel--transformations
validation_fraction:
componentInputParameter: pipelinechannel--validation_fraction
weight_column_name:
componentInputParameter: pipelinechannel--weight_column
taskInfo:
name: tabular-stats-and-example-gen
inputDefinitions:
parameters:
pipelinechannel--additional_experiments:
parameterType: STRUCT
pipelinechannel--cv_trainer_worker_pool_specs_override:
parameterType: LIST
pipelinechannel--dataflow_service_account:
parameterType: STRING
pipelinechannel--dataflow_subnetwork:
parameterType: STRING
pipelinechannel--dataflow_use_public_ips:
parameterType: BOOLEAN
pipelinechannel--disable_early_stopping:
parameterType: BOOLEAN
pipelinechannel--distill_batch_predict_machine_type:
parameterType: STRING
pipelinechannel--distill_batch_predict_max_replica_count:
parameterType: NUMBER_INTEGER
pipelinechannel--distill_batch_predict_starting_replica_count:
parameterType: NUMBER_INTEGER
pipelinechannel--enable_probabilistic_inference:
parameterType: BOOLEAN
pipelinechannel--encryption_spec_key_name:
parameterType: STRING
pipelinechannel--evaluation_batch_explain_machine_type:
parameterType: STRING
pipelinechannel--evaluation_batch_explain_max_replica_count:
parameterType: NUMBER_INTEGER
pipelinechannel--evaluation_batch_explain_starting_replica_count:
parameterType: NUMBER_INTEGER
pipelinechannel--evaluation_batch_predict_machine_type:
parameterType: STRING
pipelinechannel--evaluation_batch_predict_max_replica_count:
parameterType: NUMBER_INTEGER
pipelinechannel--evaluation_batch_predict_starting_replica_count:
parameterType: NUMBER_INTEGER
pipelinechannel--evaluation_dataflow_disk_size_gb:
parameterType: NUMBER_INTEGER
pipelinechannel--evaluation_dataflow_machine_type:
parameterType: STRING
pipelinechannel--evaluation_dataflow_max_num_workers:
parameterType: NUMBER_INTEGER
pipelinechannel--evaluation_dataflow_starting_num_workers:
parameterType: NUMBER_INTEGER
pipelinechannel--export_additional_model_without_custom_ops:
parameterType: BOOLEAN
pipelinechannel--fast_testing:
parameterType: BOOLEAN
pipelinechannel--location:
parameterType: STRING
pipelinechannel--model_description:
parameterType: STRING
pipelinechannel--optimization_objective:
parameterType: STRING
pipelinechannel--optimization_objective_precision_value:
parameterType: NUMBER_DOUBLE
pipelinechannel--optimization_objective_recall_value:
parameterType: NUMBER_DOUBLE
pipelinechannel--predefined_split_key:
parameterType: STRING
pipelinechannel--prediction_type:
parameterType: STRING
pipelinechannel--project:
parameterType: STRING
pipelinechannel--quantiles:
parameterType: LIST
pipelinechannel--root_dir:
parameterType: STRING
pipelinechannel--run_distillation:
parameterType: BOOLEAN
pipelinechannel--run_evaluation:
parameterType: BOOLEAN
pipelinechannel--set-optional-inputs-data_source_bigquery_table_path:
parameterType: STRING
pipelinechannel--set-optional-inputs-data_source_csv_filenames:
parameterType: STRING
pipelinechannel--set-optional-inputs-model_display_name:
parameterType: STRING
pipelinechannel--stage_1_num_parallel_trials:
parameterType: NUMBER_INTEGER
pipelinechannel--stage_1_tuner_worker_pool_specs_override:
parameterType: LIST
pipelinechannel--stage_1_tuning_result_artifact_uri:
parameterType: STRING
pipelinechannel--stage_2_num_parallel_trials:
parameterType: NUMBER_INTEGER
pipelinechannel--stage_2_num_selected_trials:
parameterType: NUMBER_INTEGER
pipelinechannel--stats_and_example_gen_dataflow_disk_size_gb:
parameterType: NUMBER_INTEGER
pipelinechannel--stats_and_example_gen_dataflow_machine_type:
parameterType: STRING
pipelinechannel--stats_and_example_gen_dataflow_max_num_workers:
parameterType: NUMBER_INTEGER
pipelinechannel--stratified_split_key:
parameterType: STRING
pipelinechannel--study_spec_parameters_override:
parameterType: LIST
pipelinechannel--target_column:
parameterType: STRING
pipelinechannel--test_fraction:
parameterType: NUMBER_DOUBLE
pipelinechannel--timestamp_split_key:
parameterType: STRING
pipelinechannel--train_budget_milli_node_hours:
parameterType: NUMBER_DOUBLE
pipelinechannel--training_fraction:
parameterType: NUMBER_DOUBLE
pipelinechannel--transform_dataflow_disk_size_gb:
parameterType: NUMBER_INTEGER
pipelinechannel--transform_dataflow_machine_type:
parameterType: STRING
pipelinechannel--transform_dataflow_max_num_workers:
parameterType: NUMBER_INTEGER
pipelinechannel--transformations:
parameterType: STRING
pipelinechannel--validation_fraction:
parameterType: NUMBER_DOUBLE
pipelinechannel--weight_column:
parameterType: STRING
outputDefinitions:
artifacts:
feature-attribution-2-feature_attributions:
artifactType:
schemaTitle: system.Metrics
schemaVersion: 0.0.1
feature-attribution-3-feature_attributions:
artifactType:
schemaTitle: system.Metrics
schemaVersion: 0.0.1
feature-attribution-feature_attributions:
artifactType:
schemaTitle: system.Metrics
schemaVersion: 0.0.1
model-evaluation-2-evaluation_metrics:
artifactType:
schemaTitle: system.Metrics
schemaVersion: 0.0.1
model-evaluation-3-evaluation_metrics:
artifactType:
schemaTitle: system.Metrics
schemaVersion: 0.0.1
model-evaluation-evaluation_metrics:
artifactType:
schemaTitle: system.Metrics
schemaVersion: 0.0.1
comp-feature-attribution:
executorLabel: exec-feature-attribution
inputDefinitions:
artifacts:
predictions_gcs_source:
artifactType:
schemaTitle: system.Artifact
schemaVersion: 0.0.1
isOptional: true
parameters:
dataflow_disk_size:
defaultValue: 50.0
isOptional: true
parameterType: NUMBER_INTEGER
dataflow_machine_type:
defaultValue: n1-standard-4
isOptional: true
parameterType: STRING
dataflow_max_workers_num:
defaultValue: 5.0
isOptional: true
parameterType: NUMBER_INTEGER
dataflow_service_account:
defaultValue: ''
isOptional: true
parameterType: STRING
dataflow_subnetwork:
defaultValue: ''
isOptional: true
parameterType: STRING
dataflow_use_public_ips:
defaultValue: true
isOptional: true
parameterType: BOOLEAN
dataflow_workers_num:
defaultValue: 1.0
isOptional: true
parameterType: NUMBER_INTEGER
encryption_spec_key_name:
defaultValue: ''
isOptional: true
parameterType: STRING
location:
defaultValue: us-central1
isOptional: true
parameterType: STRING
predictions_format:
defaultValue: jsonl
isOptional: true
parameterType: STRING
project:
parameterType: STRING
root_dir:
parameterType: STRING
outputDefinitions:
artifacts:
feature_attributions:
artifactType:
schemaTitle: system.Metrics
schemaVersion: 0.0.1
parameters:
gcp_resources:
parameterType: STRING
comp-feature-attribution-2:
executorLabel: exec-feature-attribution-2
inputDefinitions:
artifacts:
predictions_gcs_source:
artifactType:
schemaTitle: system.Artifact
schemaVersion: 0.0.1
isOptional: true
parameters:
dataflow_disk_size:
defaultValue: 50.0
isOptional: true
parameterType: NUMBER_INTEGER
dataflow_machine_type:
defaultValue: n1-standard-4
isOptional: true
parameterType: STRING
dataflow_max_workers_num:
defaultValue: 5.0
isOptional: true
parameterType: NUMBER_INTEGER
dataflow_service_account:
defaultValue: ''
isOptional: true
parameterType: STRING
dataflow_subnetwork:
defaultValue: ''
isOptional: true
parameterType: STRING
dataflow_use_public_ips:
defaultValue: true
isOptional: true
parameterType: BOOLEAN
dataflow_workers_num:
defaultValue: 1.0
isOptional: true
parameterType: NUMBER_INTEGER
encryption_spec_key_name:
defaultValue: ''
isOptional: true
parameterType: STRING
location:
defaultValue: us-central1
isOptional: true
parameterType: STRING
predictions_format:
defaultValue: jsonl
isOptional: true
parameterType: STRING
project:
parameterType: STRING
root_dir:
parameterType: STRING
outputDefinitions:
artifacts:
feature_attributions:
artifactType:
schemaTitle: system.Metrics
schemaVersion: 0.0.1
parameters:
gcp_resources:
parameterType: STRING
comp-feature-attribution-3:
executorLabel: exec-feature-attribution-3
inputDefinitions:
artifacts:
predictions_gcs_source:
artifactType:
schemaTitle: system.Artifact
schemaVersion: 0.0.1
isOptional: true
parameters:
dataflow_disk_size:
defaultValue: 50.0
isOptional: true
parameterType: NUMBER_INTEGER
dataflow_machine_type:
defaultValue: n1-standard-4
isOptional: true
parameterType: STRING
dataflow_max_workers_num:
defaultValue: 5.0
isOptional: true
parameterType: NUMBER_INTEGER
dataflow_service_account:
defaultValue: ''
isOptional: true
parameterType: STRING
dataflow_subnetwork:
defaultValue: ''
isOptional: true
parameterType: STRING
dataflow_use_public_ips:
defaultValue: true
isOptional: true
parameterType: BOOLEAN
dataflow_workers_num:
defaultValue: 1.0
isOptional: true
parameterType: NUMBER_INTEGER
encryption_spec_key_name:
defaultValue: ''
isOptional: true
parameterType: STRING
location:
defaultValue: us-central1
isOptional: true
parameterType: STRING
predictions_format:
defaultValue: jsonl
isOptional: true
parameterType: STRING
project:
parameterType: STRING
root_dir:
parameterType: STRING
outputDefinitions:
artifacts:
feature_attributions:
artifactType:
schemaTitle: system.Metrics
schemaVersion: 0.0.1
parameters:
gcp_resources:
parameterType: STRING
comp-importer:
executorLabel: exec-importer
inputDefinitions:
parameters:
uri:
parameterType: STRING
outputDefinitions:
artifacts:
artifact:
artifactType:
schemaTitle: system.Artifact
schemaVersion: 0.0.1
comp-merge-materialized-splits:
executorLabel: exec-merge-materialized-splits
inputDefinitions:
artifacts:
split_0:
artifactType:
schemaTitle: system.Artifact
schemaVersion: 0.0.1
split_1:
artifactType:
schemaTitle: system.Artifact
schemaVersion: 0.0.1
outputDefinitions:
artifacts:
splits:
artifactType:
schemaTitle: system.Artifact
schemaVersion: 0.0.1
comp-model-batch-explanation:
executorLabel: exec-model-batch-explanation
inputDefinitions:
artifacts:
explanation_metadata_artifact:
artifactType:
schemaTitle: system.Artifact
schemaVersion: 0.0.1
isOptional: true
unmanaged_container_model:
artifactType:
schemaTitle: google.UnmanagedContainerModel
schemaVersion: 0.0.1
isOptional: true
parameters:
accelerator_count:
defaultValue: 0.0
isOptional: true
parameterType: NUMBER_INTEGER
accelerator_type:
defaultValue: ''
isOptional: true
parameterType: STRING
bigquery_destination_output_uri:
defaultValue: ''
isOptional: true
parameterType: STRING
bigquery_source_input_uri:
defaultValue: ''
isOptional: true
parameterType: STRING
encryption_spec_key_name:
defaultValue: ''
isOptional: true
parameterType: STRING
explanation_metadata:
defaultValue: {}
isOptional: true
parameterType: STRUCT
explanation_parameters:
defaultValue: {}
isOptional: true
parameterType: STRUCT
gcs_destination_output_uri_prefix:
defaultValue: ''
isOptional: true
parameterType: STRING
gcs_source_uris:
defaultValue: []
isOptional: true
parameterType: LIST
generate_explanation:
defaultValue: false
isOptional: true
parameterType: BOOLEAN
instances_format:
defaultValue: jsonl
isOptional: true
parameterType: STRING
job_display_name:
parameterType: STRING
labels:
defaultValue: {}
isOptional: true
parameterType: STRUCT
location:
defaultValue: us-central1
isOptional: true
parameterType: STRING
machine_type:
defaultValue: ''
isOptional: true
parameterType: STRING
manual_batch_tuning_parameters_batch_size:
defaultValue: 0.0
isOptional: true
parameterType: NUMBER_INTEGER
max_replica_count:
defaultValue: 0.0
isOptional: true
parameterType: NUMBER_INTEGER
model_parameters:
defaultValue: {}
isOptional: true
parameterType: STRUCT
predictions_format:
defaultValue: jsonl
isOptional: true
parameterType: STRING
project:
parameterType: STRING
starting_replica_count:
defaultValue: 0.0
isOptional: true
parameterType: NUMBER_INTEGER
outputDefinitions:
artifacts:
batchpredictionjob:
artifactType:
schemaTitle: google.VertexBatchPredictionJob
schemaVersion: 0.0.1
bigquery_output_table:
artifactType:
schemaTitle: google.BQTable
schemaVersion: 0.0.1
gcs_output_directory:
artifactType:
schemaTitle: system.Artifact
schemaVersion: 0.0.1
parameters:
gcp_resources:
parameterType: STRING
comp-model-batch-explanation-2:
executorLabel: exec-model-batch-explanation-2
inputDefinitions:
artifacts:
explanation_metadata_artifact:
artifactType:
schemaTitle: system.Artifact
schemaVersion: 0.0.1
isOptional: true
unmanaged_container_model:
artifactType:
schemaTitle: google.UnmanagedContainerModel
schemaVersion: 0.0.1
isOptional: true
parameters:
accelerator_count:
defaultValue: 0.0
isOptional: true
parameterType: NUMBER_INTEGER
accelerator_type:
defaultValue: ''
isOptional: true
parameterType: STRING
bigquery_destination_output_uri:
defaultValue: ''
isOptional: true
parameterType: STRING
bigquery_source_input_uri:
defaultValue: ''
isOptional: true
parameterType: STRING
encryption_spec_key_name:
defaultValue: ''
isOptional: true
parameterType: STRING
explanation_metadata:
defaultValue: {}
isOptional: true
parameterType: STRUCT
explanation_parameters:
defaultValue: {}
isOptional: true
parameterType: STRUCT
gcs_destination_output_uri_prefix:
defaultValue: ''
isOptional: true
parameterType: STRING
gcs_source_uris:
defaultValue: []
isOptional: true
parameterType: LIST
generate_explanation:
defaultValue: false
isOptional: true
parameterType: BOOLEAN
instances_format:
defaultValue: jsonl
isOptional: true
parameterType: STRING
job_display_name:
parameterType: STRING
labels:
defaultValue: {}
isOptional: true
parameterType: STRUCT
location:
defaultValue: us-central1
isOptional: true
parameterType: STRING
machine_type:
defaultValue: ''
isOptional: true
parameterType: STRING
manual_batch_tuning_parameters_batch_size:
defaultValue: 0.0
isOptional: true
parameterType: NUMBER_INTEGER
max_replica_count:
defaultValue: 0.0
isOptional: true
parameterType: NUMBER_INTEGER
model_parameters:
defaultValue: {}
isOptional: true
parameterType: STRUCT
predictions_format:
defaultValue: jsonl
isOptional: true
parameterType: STRING
project:
parameterType: STRING
starting_replica_count:
defaultValue: 0.0
isOptional: true
parameterType: NUMBER_INTEGER
outputDefinitions:
artifacts:
batchpredictionjob:
artifactType:
schemaTitle: google.VertexBatchPredictionJob
schemaVersion: 0.0.1
bigquery_output_table:
artifactType:
schemaTitle: google.BQTable
schemaVersion: 0.0.1
gcs_output_directory:
artifactType:
schemaTitle: system.Artifact
schemaVersion: 0.0.1
parameters:
gcp_resources:
parameterType: STRING
comp-model-batch-explanation-3:
executorLabel: exec-model-batch-explanation-3
inputDefinitions:
artifacts:
explanation_metadata_artifact:
artifactType:
schemaTitle: system.Artifact
schemaVersion: 0.0.1
isOptional: true
unmanaged_container_model:
artifactType:
schemaTitle: google.UnmanagedContainerModel
schemaVersion: 0.0.1
isOptional: true
parameters:
accelerator_count:
defaultValue: 0.0
isOptional: true
parameterType: NUMBER_INTEGER
accelerator_type:
defaultValue: ''
isOptional: true
parameterType: STRING
bigquery_destination_output_uri:
defaultValue: ''
isOptional: true
parameterType: STRING
bigquery_source_input_uri:
defaultValue: ''
isOptional: true
parameterType: STRING
encryption_spec_key_name:
defaultValue: ''
isOptional: true
parameterType: STRING
explanation_metadata:
defaultValue: {}
isOptional: true
parameterType: STRUCT
explanation_parameters:
defaultValue: {}
isOptional: true
parameterType: STRUCT
gcs_destination_output_uri_prefix:
defaultValue: ''
isOptional: true
parameterType: STRING
gcs_source_uris:
defaultValue: []
isOptional: true
parameterType: LIST
generate_explanation:
defaultValue: false
isOptional: true
parameterType: BOOLEAN
instances_format:
defaultValue: jsonl
isOptional: true
parameterType: STRING
job_display_name:
parameterType: STRING
labels:
defaultValue: {}
isOptional: true
parameterType: STRUCT
location:
defaultValue: us-central1
isOptional: true
parameterType: STRING
machine_type:
defaultValue: ''
isOptional: true
parameterType: STRING
manual_batch_tuning_parameters_batch_size:
defaultValue: 0.0
isOptional: true
parameterType: NUMBER_INTEGER
max_replica_count:
defaultValue: 0.0
isOptional: true
parameterType: NUMBER_INTEGER
model_parameters:
defaultValue: {}
isOptional: true
parameterType: STRUCT
predictions_format:
defaultValue: jsonl
isOptional: true
parameterType: STRING
project:
parameterType: STRING
starting_replica_count:
defaultValue: 0.0
isOptional: true
parameterType: NUMBER_INTEGER
outputDefinitions:
artifacts:
batchpredictionjob:
artifactType:
schemaTitle: google.VertexBatchPredictionJob
schemaVersion: 0.0.1
bigquery_output_table:
artifactType:
schemaTitle: google.BQTable
schemaVersion: 0.0.1
gcs_output_directory:
artifactType:
schemaTitle: system.Artifact
schemaVersion: 0.0.1
parameters:
gcp_resources:
parameterType: STRING
comp-model-batch-predict:
executorLabel: exec-model-batch-predict
inputDefinitions:
artifacts:
unmanaged_container_model:
artifactType:
schemaTitle: google.UnmanagedContainerModel
schemaVersion: 0.0.1
isOptional: true
parameters:
accelerator_count:
defaultValue: 0.0
isOptional: true
parameterType: NUMBER_INTEGER
accelerator_type:
defaultValue: ''
isOptional: true
parameterType: STRING
bigquery_destination_output_uri:
defaultValue: ''
isOptional: true
parameterType: STRING
bigquery_source_input_uri:
defaultValue: ''
isOptional: true
parameterType: STRING
encryption_spec_key_name:
defaultValue: ''
isOptional: true
parameterType: STRING
explanation_metadata:
defaultValue: {}
isOptional: true
parameterType: STRUCT
explanation_parameters:
defaultValue: {}
isOptional: true
parameterType: STRUCT
gcs_destination_output_uri_prefix:
defaultValue: ''
isOptional: true
parameterType: STRING
gcs_source_uris:
defaultValue: []
isOptional: true
parameterType: LIST
generate_explanation:
defaultValue: false
isOptional: true
parameterType: BOOLEAN
instances_format:
defaultValue: jsonl
isOptional: true
parameterType: STRING
job_display_name:
parameterType: STRING
labels:
defaultValue: {}
isOptional: true
parameterType: STRUCT
location:
defaultValue: us-central1
isOptional: true
parameterType: STRING
machine_type:
defaultValue: ''
isOptional: true
parameterType: STRING
manual_batch_tuning_parameters_batch_size:
defaultValue: 0.0
isOptional: true
parameterType: NUMBER_INTEGER
max_replica_count:
defaultValue: 0.0
isOptional: true
parameterType: NUMBER_INTEGER
model_parameters:
defaultValue: {}
isOptional: true
parameterType: STRUCT
predictions_format:
defaultValue: jsonl
isOptional: true
parameterType: STRING
project:
parameterType: STRING
starting_replica_count:
defaultValue: 0.0
isOptional: true
parameterType: NUMBER_INTEGER
outputDefinitions:
artifacts:
batchpredictionjob:
artifactType:
schemaTitle: google.VertexBatchPredictionJob
schemaVersion: 0.0.1
bigquery_output_table:
artifactType:
schemaTitle: google.BQTable
schemaVersion: 0.0.1
gcs_output_directory:
artifactType:
schemaTitle: system.Artifact
schemaVersion: 0.0.1
parameters:
gcp_resources:
parameterType: STRING
comp-model-batch-predict-2:
executorLabel: exec-model-batch-predict-2
inputDefinitions:
artifacts:
unmanaged_container_model:
artifactType:
schemaTitle: google.UnmanagedContainerModel
schemaVersion: 0.0.1
isOptional: true
parameters:
accelerator_count:
defaultValue: 0.0
isOptional: true
parameterType: NUMBER_INTEGER
accelerator_type:
defaultValue: ''
isOptional: true
parameterType: STRING
bigquery_destination_output_uri:
defaultValue: ''
isOptional: true
parameterType: STRING
bigquery_source_input_uri:
defaultValue: ''
isOptional: true
parameterType: STRING
encryption_spec_key_name:
defaultValue: ''
isOptional: true
parameterType: STRING
explanation_metadata:
defaultValue: {}
isOptional: true
parameterType: STRUCT
explanation_parameters:
defaultValue: {}
isOptional: true
parameterType: STRUCT
gcs_destination_output_uri_prefix:
defaultValue: ''
isOptional: true
parameterType: STRING
gcs_source_uris:
defaultValue: []
isOptional: true
parameterType: LIST
generate_explanation:
defaultValue: false
isOptional: true
parameterType: BOOLEAN
instances_format:
defaultValue: jsonl
isOptional: true
parameterType: STRING
job_display_name:
parameterType: STRING
labels:
defaultValue: {}
isOptional: true
parameterType: STRUCT
location:
defaultValue: us-central1
isOptional: true
parameterType: STRING
machine_type:
defaultValue: ''
isOptional: true
parameterType: STRING
manual_batch_tuning_parameters_batch_size:
defaultValue: 0.0
isOptional: true
parameterType: NUMBER_INTEGER
max_replica_count:
defaultValue: 0.0
isOptional: true
parameterType: NUMBER_INTEGER
model_parameters:
defaultValue: {}
isOptional: true
parameterType: STRUCT
predictions_format:
defaultValue: jsonl
isOptional: true
parameterType: STRING
project:
parameterType: STRING
starting_replica_count:
defaultValue: 0.0
isOptional: true
parameterType: NUMBER_INTEGER
outputDefinitions:
artifacts:
batchpredictionjob:
artifactType:
schemaTitle: google.VertexBatchPredictionJob
schemaVersion: 0.0.1
bigquery_output_table:
artifactType:
schemaTitle: google.BQTable
schemaVersion: 0.0.1
gcs_output_directory:
artifactType:
schemaTitle: system.Artifact
schemaVersion: 0.0.1
parameters:
gcp_resources:
parameterType: STRING
comp-model-batch-predict-3:
executorLabel: exec-model-batch-predict-3
inputDefinitions:
artifacts:
unmanaged_container_model:
artifactType:
schemaTitle: google.UnmanagedContainerModel
schemaVersion: 0.0.1
isOptional: true
parameters:
accelerator_count:
defaultValue: 0.0
isOptional: true
parameterType: NUMBER_INTEGER
accelerator_type:
defaultValue: ''
isOptional: true
parameterType: STRING
bigquery_destination_output_uri:
defaultValue: ''
isOptional: true
parameterType: STRING
bigquery_source_input_uri:
defaultValue: ''
isOptional: true
parameterType: STRING
encryption_spec_key_name:
defaultValue: ''
isOptional: true
parameterType: STRING
explanation_metadata:
defaultValue: {}
isOptional: true
parameterType: STRUCT
explanation_parameters:
defaultValue: {}
isOptional: true
parameterType: STRUCT
gcs_destination_output_uri_prefix:
defaultValue: ''
isOptional: true
parameterType: STRING
gcs_source_uris:
defaultValue: []
isOptional: true
parameterType: LIST
generate_explanation:
defaultValue: false
isOptional: true
parameterType: BOOLEAN
instances_format:
defaultValue: jsonl
isOptional: true
parameterType: STRING
job_display_name:
parameterType: STRING
labels:
defaultValue: {}
isOptional: true
parameterType: STRUCT
location:
defaultValue: us-central1
isOptional: true
parameterType: STRING
machine_type:
defaultValue: ''
isOptional: true
parameterType: STRING
manual_batch_tuning_parameters_batch_size:
defaultValue: 0.0
isOptional: true
parameterType: NUMBER_INTEGER
max_replica_count:
defaultValue: 0.0
isOptional: true
parameterType: NUMBER_INTEGER
model_parameters:
defaultValue: {}
isOptional: true
parameterType: STRUCT
predictions_format:
defaultValue: jsonl
isOptional: true
parameterType: STRING
project:
parameterType: STRING
starting_replica_count:
defaultValue: 0.0
isOptional: true
parameterType: NUMBER_INTEGER
outputDefinitions:
artifacts:
batchpredictionjob:
artifactType:
schemaTitle: google.VertexBatchPredictionJob
schemaVersion: 0.0.1
bigquery_output_table:
artifactType:
schemaTitle: google.BQTable
schemaVersion: 0.0.1
gcs_output_directory:
artifactType:
schemaTitle: system.Artifact
schemaVersion: 0.0.1
parameters:
gcp_resources:
parameterType: STRING
comp-model-batch-predict-4:
executorLabel: exec-model-batch-predict-4
inputDefinitions:
artifacts:
unmanaged_container_model:
artifactType:
schemaTitle: google.UnmanagedContainerModel
schemaVersion: 0.0.1
isOptional: true
parameters:
accelerator_count:
defaultValue: 0.0
isOptional: true
parameterType: NUMBER_INTEGER
accelerator_type:
defaultValue: ''
isOptional: true
parameterType: STRING
bigquery_destination_output_uri:
defaultValue: ''
isOptional: true
parameterType: STRING
bigquery_source_input_uri:
defaultValue: ''
isOptional: true
parameterType: STRING
encryption_spec_key_name:
defaultValue: ''
isOptional: true
parameterType: STRING
explanation_metadata:
defaultValue: {}
isOptional: true
parameterType: STRUCT
explanation_parameters:
defaultValue: {}
isOptional: true
parameterType: STRUCT
gcs_destination_output_uri_prefix:
defaultValue: ''
isOptional: true
parameterType: STRING
gcs_source_uris:
defaultValue: []
isOptional: true
parameterType: LIST
generate_explanation:
defaultValue: false
isOptional: true
parameterType: BOOLEAN
instances_format:
defaultValue: jsonl
isOptional: true
parameterType: STRING
job_display_name:
parameterType: STRING
labels:
defaultValue: {}
isOptional: true
parameterType: STRUCT
location:
defaultValue: us-central1
isOptional: true
parameterType: STRING
machine_type:
defaultValue: ''
isOptional: true
parameterType: STRING
manual_batch_tuning_parameters_batch_size:
defaultValue: 0.0
isOptional: true
parameterType: NUMBER_INTEGER
max_replica_count:
defaultValue: 0.0
isOptional: true
parameterType: NUMBER_INTEGER
model_parameters:
defaultValue: {}
isOptional: true
parameterType: STRUCT
predictions_format:
defaultValue: jsonl
isOptional: true
parameterType: STRING
project:
parameterType: STRING
starting_replica_count:
defaultValue: 0.0
isOptional: true
parameterType: NUMBER_INTEGER
outputDefinitions:
artifacts:
batchpredictionjob:
artifactType:
schemaTitle: google.VertexBatchPredictionJob
schemaVersion: 0.0.1
bigquery_output_table:
artifactType:
schemaTitle: google.BQTable
schemaVersion: 0.0.1
gcs_output_directory:
artifactType:
schemaTitle: system.Artifact
schemaVersion: 0.0.1
parameters:
gcp_resources:
parameterType: STRING
comp-model-batch-predict-5:
executorLabel: exec-model-batch-predict-5
inputDefinitions:
artifacts:
unmanaged_container_model:
artifactType:
schemaTitle: google.UnmanagedContainerModel
schemaVersion: 0.0.1
isOptional: true
parameters:
accelerator_count:
defaultValue: 0.0
isOptional: true
parameterType: NUMBER_INTEGER
accelerator_type:
defaultValue: ''
isOptional: true
parameterType: STRING
bigquery_destination_output_uri:
defaultValue: ''
isOptional: true
parameterType: STRING
bigquery_source_input_uri:
defaultValue: ''
isOptional: true
parameterType: STRING
encryption_spec_key_name:
defaultValue: ''
isOptional: true
parameterType: STRING
explanation_metadata:
defaultValue: {}
isOptional: true
parameterType: STRUCT
explanation_parameters:
defaultValue: {}
isOptional: true
parameterType: STRUCT
gcs_destination_output_uri_prefix:
defaultValue: ''
isOptional: true
parameterType: STRING
gcs_source_uris:
defaultValue: []
isOptional: true
parameterType: LIST
generate_explanation:
defaultValue: false
isOptional: true
parameterType: BOOLEAN
instances_format:
defaultValue: jsonl
isOptional: true
parameterType: STRING
job_display_name:
parameterType: STRING
labels:
defaultValue: {}
isOptional: true
parameterType: STRUCT
location:
defaultValue: us-central1
isOptional: true
parameterType: STRING
machine_type:
defaultValue: ''
isOptional: true
parameterType: STRING
manual_batch_tuning_parameters_batch_size:
defaultValue: 0.0
isOptional: true
parameterType: NUMBER_INTEGER
max_replica_count:
defaultValue: 0.0
isOptional: true
parameterType: NUMBER_INTEGER
model_parameters:
defaultValue: {}
isOptional: true
parameterType: STRUCT
predictions_format:
defaultValue: jsonl
isOptional: true
parameterType: STRING
project:
parameterType: STRING
starting_replica_count:
defaultValue: 0.0
isOptional: true
parameterType: NUMBER_INTEGER
outputDefinitions:
artifacts:
batchpredictionjob:
artifactType:
schemaTitle: google.VertexBatchPredictionJob
schemaVersion: 0.0.1
bigquery_output_table:
artifactType:
schemaTitle: google.BQTable
schemaVersion: 0.0.1
gcs_output_directory:
artifactType:
schemaTitle: system.Artifact
schemaVersion: 0.0.1
parameters:
gcp_resources:
parameterType: STRING
comp-model-evaluation:
executorLabel: exec-model-evaluation
inputDefinitions:
artifacts:
batch_prediction_job:
artifactType:
schemaTitle: google.VertexBatchPredictionJob
schemaVersion: 0.0.1
parameters:
dataflow_disk_size:
defaultValue: 50.0
isOptional: true
parameterType: NUMBER_INTEGER
dataflow_machine_type:
defaultValue: n1-standard-4
isOptional: true
parameterType: STRING
dataflow_max_workers_num:
defaultValue: 100.0
isOptional: true
parameterType: NUMBER_INTEGER
dataflow_service_account:
defaultValue: ''
isOptional: true
parameterType: STRING
dataflow_subnetwork:
defaultValue: ''
isOptional: true
parameterType: STRING
dataflow_use_public_ips:
defaultValue: true
isOptional: true
parameterType: BOOLEAN
dataflow_workers_num:
defaultValue: 10.0
isOptional: true
parameterType: NUMBER_INTEGER
encryption_spec_key_name:
defaultValue: ''
isOptional: true
parameterType: STRING
example_weight_column:
defaultValue: ''
isOptional: true
parameterType: STRING
ground_truth_column:
parameterType: STRING
ground_truth_format:
defaultValue: jsonl
isOptional: true
parameterType: STRING
location:
defaultValue: us-central1
isOptional: true
parameterType: STRING
prediction_id_column:
defaultValue: ''
isOptional: true
parameterType: STRING
prediction_label_column:
defaultValue: ''
isOptional: true
parameterType: STRING
prediction_score_column:
defaultValue: ''
isOptional: true
parameterType: STRING
predictions_format:
defaultValue: jsonl
isOptional: true
parameterType: STRING
problem_type:
parameterType: STRING
project:
parameterType: STRING
root_dir:
parameterType: STRING
outputDefinitions:
artifacts:
evaluation_metrics:
artifactType:
schemaTitle: system.Metrics
schemaVersion: 0.0.1
parameters:
gcp_resources:
parameterType: STRING
comp-model-evaluation-2:
executorLabel: exec-model-evaluation-2
inputDefinitions:
artifacts:
batch_prediction_job:
artifactType:
schemaTitle: google.VertexBatchPredictionJob
schemaVersion: 0.0.1
parameters:
dataflow_disk_size:
defaultValue: 50.0
isOptional: true
parameterType: NUMBER_INTEGER
dataflow_machine_type:
defaultValue: n1-standard-4
isOptional: true
parameterType: STRING
dataflow_max_workers_num:
defaultValue: 100.0
isOptional: true
parameterType: NUMBER_INTEGER
dataflow_service_account:
defaultValue: ''
isOptional: true
parameterType: STRING
dataflow_subnetwork:
defaultValue: ''
isOptional: true
parameterType: STRING
dataflow_use_public_ips:
defaultValue: true
isOptional: true
parameterType: BOOLEAN
dataflow_workers_num:
defaultValue: 10.0
isOptional: true
parameterType: NUMBER_INTEGER
encryption_spec_key_name:
defaultValue: ''
isOptional: true
parameterType: STRING
example_weight_column:
defaultValue: ''
isOptional: true
parameterType: STRING
ground_truth_column:
parameterType: STRING
ground_truth_format:
defaultValue: jsonl
isOptional: true
parameterType: STRING
location:
defaultValue: us-central1
isOptional: true
parameterType: STRING
prediction_id_column:
defaultValue: ''
isOptional: true
parameterType: STRING
prediction_label_column:
defaultValue: ''
isOptional: true
parameterType: STRING
prediction_score_column:
defaultValue: ''
isOptional: true
parameterType: STRING
predictions_format:
defaultValue: jsonl
isOptional: true
parameterType: STRING
problem_type:
parameterType: STRING
project:
parameterType: STRING
root_dir:
parameterType: STRING
outputDefinitions:
artifacts:
evaluation_metrics:
artifactType:
schemaTitle: system.Metrics
schemaVersion: 0.0.1
parameters:
gcp_resources:
parameterType: STRING
comp-model-evaluation-3:
executorLabel: exec-model-evaluation-3
inputDefinitions:
artifacts:
batch_prediction_job:
artifactType:
schemaTitle: google.VertexBatchPredictionJob
schemaVersion: 0.0.1
parameters:
dataflow_disk_size:
defaultValue: 50.0
isOptional: true
parameterType: NUMBER_INTEGER
dataflow_machine_type:
defaultValue: n1-standard-4
isOptional: true
parameterType: STRING
dataflow_max_workers_num:
defaultValue: 100.0
isOptional: true
parameterType: NUMBER_INTEGER
dataflow_service_account:
defaultValue: ''
isOptional: true
parameterType: STRING
dataflow_subnetwork:
defaultValue: ''
isOptional: true
parameterType: STRING
dataflow_use_public_ips:
defaultValue: true
isOptional: true
parameterType: BOOLEAN
dataflow_workers_num:
defaultValue: 10.0
isOptional: true
parameterType: NUMBER_INTEGER
encryption_spec_key_name:
defaultValue: ''
isOptional: true
parameterType: STRING
example_weight_column:
defaultValue: ''
isOptional: true
parameterType: STRING
ground_truth_column:
parameterType: STRING
ground_truth_format:
defaultValue: jsonl
isOptional: true
parameterType: STRING
location:
defaultValue: us-central1
isOptional: true
parameterType: STRING
prediction_id_column:
defaultValue: ''
isOptional: true
parameterType: STRING
prediction_label_column:
defaultValue: ''
isOptional: true
parameterType: STRING
prediction_score_column:
defaultValue: ''
isOptional: true
parameterType: STRING
predictions_format:
defaultValue: jsonl
isOptional: true
parameterType: STRING
problem_type:
parameterType: STRING
project:
parameterType: STRING
root_dir:
parameterType: STRING
outputDefinitions:
artifacts:
evaluation_metrics:
artifactType:
schemaTitle: system.Metrics
schemaVersion: 0.0.1
parameters:
gcp_resources:
parameterType: STRING
comp-model-evaluation-import:
executorLabel: exec-model-evaluation-import
inputDefinitions:
artifacts:
classification_metrics:
artifactType:
schemaTitle: google.ClassificationMetrics
schemaVersion: 0.0.1
isOptional: true
explanation:
artifactType:
schemaTitle: system.Metrics
schemaVersion: 0.0.1
isOptional: true
feature_attributions:
artifactType:
schemaTitle: system.Metrics
schemaVersion: 0.0.1
isOptional: true
forecasting_metrics:
artifactType:
schemaTitle: google.ForecastingMetrics
schemaVersion: 0.0.1
isOptional: true
metrics:
artifactType:
schemaTitle: system.Metrics
schemaVersion: 0.0.1
isOptional: true
model:
artifactType:
schemaTitle: google.VertexModel
schemaVersion: 0.0.1
regression_metrics:
artifactType:
schemaTitle: google.RegressionMetrics
schemaVersion: 0.0.1
isOptional: true
parameters:
dataset_path:
defaultValue: ''
isOptional: true
parameterType: STRING
dataset_paths:
defaultValue: []
isOptional: true
parameterType: LIST
dataset_type:
defaultValue: ''
isOptional: true
parameterType: STRING
display_name:
defaultValue: ''
isOptional: true
parameterType: STRING
problem_type:
isOptional: true
parameterType: STRING
outputDefinitions:
parameters:
gcp_resources:
parameterType: STRING
comp-model-evaluation-import-2:
executorLabel: exec-model-evaluation-import-2
inputDefinitions:
artifacts:
classification_metrics:
artifactType:
schemaTitle: google.ClassificationMetrics
schemaVersion: 0.0.1
isOptional: true
explanation:
artifactType:
schemaTitle: system.Metrics
schemaVersion: 0.0.1
isOptional: true
feature_attributions:
artifactType:
schemaTitle: system.Metrics
schemaVersion: 0.0.1
isOptional: true
forecasting_metrics:
artifactType:
schemaTitle: google.ForecastingMetrics
schemaVersion: 0.0.1
isOptional: true
metrics:
artifactType:
schemaTitle: system.Metrics
schemaVersion: 0.0.1
isOptional: true
model:
artifactType:
schemaTitle: google.VertexModel
schemaVersion: 0.0.1
regression_metrics:
artifactType:
schemaTitle: google.RegressionMetrics
schemaVersion: 0.0.1
isOptional: true
parameters:
dataset_path:
defaultValue: ''
isOptional: true
parameterType: STRING
dataset_paths:
defaultValue: []
isOptional: true
parameterType: LIST
dataset_type:
defaultValue: ''
isOptional: true
parameterType: STRING
display_name:
defaultValue: ''
isOptional: true
parameterType: STRING
problem_type:
isOptional: true
parameterType: STRING
outputDefinitions:
parameters:
gcp_resources:
parameterType: STRING
comp-model-evaluation-import-3:
executorLabel: exec-model-evaluation-import-3
inputDefinitions:
artifacts:
classification_metrics:
artifactType:
schemaTitle: google.ClassificationMetrics
schemaVersion: 0.0.1
isOptional: true
explanation:
artifactType:
schemaTitle: system.Metrics
schemaVersion: 0.0.1
isOptional: true
feature_attributions:
artifactType:
schemaTitle: system.Metrics
schemaVersion: 0.0.1
isOptional: true
forecasting_metrics:
artifactType:
schemaTitle: google.ForecastingMetrics
schemaVersion: 0.0.1
isOptional: true
metrics:
artifactType:
schemaTitle: system.Metrics
schemaVersion: 0.0.1
isOptional: true
model:
artifactType:
schemaTitle: google.VertexModel
schemaVersion: 0.0.1
regression_metrics:
artifactType:
schemaTitle: google.RegressionMetrics
schemaVersion: 0.0.1
isOptional: true
parameters:
dataset_path:
defaultValue: ''
isOptional: true
parameterType: STRING
dataset_paths:
defaultValue: []
isOptional: true
parameterType: LIST
dataset_type:
defaultValue: ''
isOptional: true
parameterType: STRING
display_name:
defaultValue: ''
isOptional: true
parameterType: STRING
problem_type:
isOptional: true
parameterType: STRING
outputDefinitions:
parameters:
gcp_resources:
parameterType: STRING
comp-model-upload:
executorLabel: exec-model-upload
inputDefinitions:
artifacts:
explanation_metadata_artifact:
artifactType:
schemaTitle: system.Artifact
schemaVersion: 0.0.1
isOptional: true
unmanaged_container_model:
artifactType:
schemaTitle: google.UnmanagedContainerModel
schemaVersion: 0.0.1
isOptional: true
parameters:
description:
defaultValue: ''
isOptional: true
parameterType: STRING
display_name:
parameterType: STRING
encryption_spec_key_name:
defaultValue: ''
isOptional: true
parameterType: STRING
explanation_metadata:
defaultValue: {}
isOptional: true
parameterType: STRUCT
explanation_parameters:
defaultValue: {}
isOptional: true
parameterType: STRUCT
labels:
defaultValue: {}
isOptional: true
parameterType: STRUCT
location:
defaultValue: us-central1
isOptional: true
parameterType: STRING
project:
parameterType: STRING
outputDefinitions:
artifacts:
model:
artifactType:
schemaTitle: google.VertexModel
schemaVersion: 0.0.1
parameters:
gcp_resources:
parameterType: STRING
comp-model-upload-2:
executorLabel: exec-model-upload-2
inputDefinitions:
artifacts:
explanation_metadata_artifact:
artifactType:
schemaTitle: system.Artifact
schemaVersion: 0.0.1
isOptional: true
unmanaged_container_model:
artifactType:
schemaTitle: google.UnmanagedContainerModel
schemaVersion: 0.0.1
isOptional: true
parameters:
description:
defaultValue: ''
isOptional: true
parameterType: STRING
display_name:
parameterType: STRING
encryption_spec_key_name:
defaultValue: ''
isOptional: true
parameterType: STRING
explanation_metadata:
defaultValue: {}
isOptional: true
parameterType: STRUCT
explanation_parameters:
defaultValue: {}
isOptional: true
parameterType: STRUCT
labels:
defaultValue: {}
isOptional: true
parameterType: STRUCT
location:
defaultValue: us-central1
isOptional: true
parameterType: STRING
project:
parameterType: STRING
outputDefinitions:
artifacts:
model:
artifactType:
schemaTitle: google.VertexModel
schemaVersion: 0.0.1
parameters:
gcp_resources:
parameterType: STRING
comp-model-upload-3:
executorLabel: exec-model-upload-3
inputDefinitions:
artifacts:
explanation_metadata_artifact:
artifactType:
schemaTitle: system.Artifact
schemaVersion: 0.0.1
isOptional: true
unmanaged_container_model:
artifactType:
schemaTitle: google.UnmanagedContainerModel
schemaVersion: 0.0.1
isOptional: true
parameters:
description:
defaultValue: ''
isOptional: true
parameterType: STRING
display_name:
parameterType: STRING
encryption_spec_key_name:
defaultValue: ''
isOptional: true
parameterType: STRING
explanation_metadata:
defaultValue: {}
isOptional: true
parameterType: STRUCT
explanation_parameters:
defaultValue: {}
isOptional: true
parameterType: STRUCT
labels:
defaultValue: {}
isOptional: true
parameterType: STRUCT
location:
defaultValue: us-central1
isOptional: true
parameterType: STRING
project:
parameterType: STRING
outputDefinitions:
artifacts:
model:
artifactType:
schemaTitle: google.VertexModel
schemaVersion: 0.0.1
parameters:
gcp_resources:
parameterType: STRING
comp-read-input-uri:
executorLabel: exec-read-input-uri
inputDefinitions:
artifacts:
split_uri:
artifactType:
schemaTitle: system.Dataset
schemaVersion: 0.0.1
outputDefinitions:
parameters:
Output:
parameterType: LIST
comp-read-input-uri-2:
executorLabel: exec-read-input-uri-2
inputDefinitions:
artifacts:
split_uri:
artifactType:
schemaTitle: system.Dataset
schemaVersion: 0.0.1
outputDefinitions:
parameters:
Output:
parameterType: LIST
comp-set-optional-inputs:
executorLabel: exec-set-optional-inputs
inputDefinitions:
artifacts:
vertex_dataset:
artifactType:
schemaTitle: system.Artifact
schemaVersion: 0.0.1
parameters:
data_source_bigquery_table_path:
parameterType: STRING
data_source_csv_filenames:
parameterType: STRING
location:
parameterType: STRING
model_display_name:
parameterType: STRING
project:
parameterType: STRING
outputDefinitions:
parameters:
data_source_bigquery_table_path:
parameterType: STRING
data_source_csv_filenames:
parameterType: STRING
model_display_name:
parameterType: STRING
comp-string-not-empty:
executorLabel: exec-string-not-empty
inputDefinitions:
parameters:
value:
parameterType: STRING
outputDefinitions:
parameters:
Output:
parameterType: STRING
comp-tabular-stats-and-example-gen:
executorLabel: exec-tabular-stats-and-example-gen
inputDefinitions:
parameters:
additional_experiments:
defaultValue: ''
isOptional: true
parameterType: STRING
additional_experiments_json:
defaultValue: {}
isOptional: true
parameterType: STRUCT
data_source_bigquery_table_path:
defaultValue: ''
isOptional: true
parameterType: STRING
data_source_csv_filenames:
defaultValue: ''
isOptional: true
parameterType: STRING
dataflow_disk_size_gb:
defaultValue: 40.0
isOptional: true
parameterType: NUMBER_INTEGER
dataflow_machine_type:
defaultValue: n1-standard-16
isOptional: true
parameterType: STRING
dataflow_max_num_workers:
defaultValue: 25.0
isOptional: true
parameterType: NUMBER_INTEGER
dataflow_service_account:
defaultValue: ''
isOptional: true
parameterType: STRING
dataflow_subnetwork:
defaultValue: ''
isOptional: true
parameterType: STRING
dataflow_use_public_ips:
defaultValue: true
isOptional: true
parameterType: BOOLEAN
enable_probabilistic_inference:
defaultValue: false
isOptional: true
parameterType: BOOLEAN
encryption_spec_key_name:
defaultValue: ''
isOptional: true
parameterType: STRING
location:
parameterType: STRING
optimization_objective:
defaultValue: ''
isOptional: true
parameterType: STRING
optimization_objective_precision_value:
defaultValue: -1.0
isOptional: true
parameterType: NUMBER_DOUBLE
optimization_objective_recall_value:
defaultValue: -1.0
isOptional: true
parameterType: NUMBER_DOUBLE
predefined_split_key:
defaultValue: ''
isOptional: true
parameterType: STRING
prediction_type:
parameterType: STRING
project:
parameterType: STRING
quantiles:
defaultValue: []
isOptional: true
parameterType: LIST
request_type:
defaultValue: COLUMN_STATS_ONLY
isOptional: true
parameterType: STRING
root_dir:
parameterType: STRING
run_distillation:
defaultValue: false
isOptional: true
parameterType: BOOLEAN
stratified_split_key:
defaultValue: ''
isOptional: true
parameterType: STRING
target_column_name:
parameterType: STRING
test_fraction:
defaultValue: -1.0
isOptional: true
parameterType: NUMBER_DOUBLE
timestamp_split_key:
defaultValue: ''
isOptional: true
parameterType: STRING
training_fraction:
defaultValue: -1.0
isOptional: true
parameterType: NUMBER_DOUBLE
transformations:
parameterType: STRING
transformations_path:
defaultValue: ''
isOptional: true
parameterType: STRING
validation_fraction:
defaultValue: -1.0
isOptional: true
parameterType: NUMBER_DOUBLE
weight_column_name:
defaultValue: ''
isOptional: true
parameterType: STRING
outputDefinitions:
artifacts:
dataset_schema:
artifactType:
schemaTitle: system.Artifact
schemaVersion: 0.0.1
dataset_stats:
artifactType:
schemaTitle: system.Artifact
schemaVersion: 0.0.1
eval_split:
artifactType:
schemaTitle: system.Dataset
schemaVersion: 0.0.1
instance_baseline:
artifactType:
schemaTitle: system.Artifact
schemaVersion: 0.0.1
metadata:
artifactType:
schemaTitle: system.Artifact
schemaVersion: 0.0.1
test_split:
artifactType:
schemaTitle: system.Dataset
schemaVersion: 0.0.1
train_split:
artifactType:
schemaTitle: system.Dataset
schemaVersion: 0.0.1
parameters:
downsampled_test_split_json:
parameterType: LIST
gcp_resources:
parameterType: STRING
test_split_json:
parameterType: LIST
comp-write-bp-result-path:
executorLabel: exec-write-bp-result-path
inputDefinitions:
artifacts:
bp_job:
artifactType:
schemaTitle: system.Artifact
schemaVersion: 0.0.1
outputDefinitions:
artifacts:
result:
artifactType:
schemaTitle: system.Dataset
schemaVersion: 0.0.1
comp-write-bp-result-path-2:
executorLabel: exec-write-bp-result-path-2
inputDefinitions:
artifacts:
bp_job:
artifactType:
schemaTitle: system.Artifact
schemaVersion: 0.0.1
outputDefinitions:
artifacts:
result:
artifactType:
schemaTitle: system.Dataset
schemaVersion: 0.0.1
deploymentSpec:
executors:
exec-automl-tabular-cv-trainer:
container:
args:
- --type
- CustomJob
- --project
- '{{$.inputs.parameters[''project'']}}'
- --location
- '{{$.inputs.parameters[''location'']}}'
- --gcp_resources
- '{{$.outputs.parameters[''gcp_resources''].output_file}}'
- --payload
- '{"Concat": ["{\"display_name\": \"automl-tabular-cv-tuner-{{$.pipeline_job_uuid}}-{{$.pipeline_task_uuid}}\",
\"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
"\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
{\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:dev", "\",
\"args\": [\"l2l_cv_tuner\", \"--transform_output_path=", "{{$.inputs.artifacts[''transform_output''].uri}}",
"\", \"--training_docker_uri=", "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:dev",
"\", \"--component_id={{$.pipeline_task_uuid}}\", \"--training_base_dir=",
"{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/train\",
\"--num_parallel_trial=", "{{$.inputs.parameters[''num_parallel_trials'']}}",
"\", \"--single_run_max_secs=", "{{$.inputs.parameters[''single_run_max_secs'']}}",
"\", \"--deadline_hours=", "{{$.inputs.parameters[''deadline_hours'']}}",
"\", \"--valid_trials_completed_threshold=0.7\", \"--num_selected_trials=",
"{{$.inputs.parameters[''num_selected_trials'']}}", "\", \"--num_selected_features=",
"{{$.inputs.parameters[''num_selected_features'']}}", "\", \"--lro_job_info=",
"{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/lro\",
\"--error_file_path=", "{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/error.pb\",
\"--metadata_path=", "{{$.inputs.artifacts[''metadata''].uri}}", "\", \"--materialized_cv_splits=",
"{{$.inputs.artifacts[''materialized_cv_splits''].uri}}", "\", \"--tuning_result_input_path=",
"{{$.inputs.artifacts[''tuning_result_input''].uri}}", "\", \"--tuning_result_output_path=",
"{{$.outputs.artifacts[''tuning_result_output''].uri}}", "\", \"--kms_key_name=",
"{{$.inputs.parameters[''encryption_spec_key_name'']}}", "\", \"--gcp_resources_path=",
"{{$.outputs.parameters[''gcp_resources''].output_file}}", "\", \"--execution_metrics_path=",
"{{$.outputs.parameters[''execution_metrics''].output_file}}", "\", \"--use_custom_job=true\",
\"--use_json=true\", \"--log_level=ERROR\", \"--executor_input={{$.json_escape[1]}}\"]}}]}}"]}'
command:
- python3
- -u
- -m
- google_cloud_pipeline_components.container.v1.custom_job.launcher
image: gcr.io/ml-pipeline/google-cloud-pipeline-components:1.0.32
exec-automl-tabular-cv-trainer-2:
container:
args:
- --type
- CustomJob
- --project
- '{{$.inputs.parameters[''project'']}}'
- --location
- '{{$.inputs.parameters[''location'']}}'
- --gcp_resources
- '{{$.outputs.parameters[''gcp_resources''].output_file}}'
- --payload
- '{"Concat": ["{\"display_name\": \"automl-tabular-cv-tuner-{{$.pipeline_job_uuid}}-{{$.pipeline_task_uuid}}\",
\"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
"\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
{\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:dev", "\",
\"args\": [\"l2l_cv_tuner\", \"--transform_output_path=", "{{$.inputs.artifacts[''transform_output''].uri}}",
"\", \"--training_docker_uri=", "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:dev",
"\", \"--component_id={{$.pipeline_task_uuid}}\", \"--training_base_dir=",
"{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/train\",
\"--num_parallel_trial=", "{{$.inputs.parameters[''num_parallel_trials'']}}",
"\", \"--single_run_max_secs=", "{{$.inputs.parameters[''single_run_max_secs'']}}",
"\", \"--deadline_hours=", "{{$.inputs.parameters[''deadline_hours'']}}",
"\", \"--valid_trials_completed_threshold=0.7\", \"--num_selected_trials=",
"{{$.inputs.parameters[''num_selected_trials'']}}", "\", \"--num_selected_features=",
"{{$.inputs.parameters[''num_selected_features'']}}", "\", \"--lro_job_info=",
"{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/lro\",
\"--error_file_path=", "{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/error.pb\",
\"--metadata_path=", "{{$.inputs.artifacts[''metadata''].uri}}", "\", \"--materialized_cv_splits=",
"{{$.inputs.artifacts[''materialized_cv_splits''].uri}}", "\", \"--tuning_result_input_path=",
"{{$.inputs.artifacts[''tuning_result_input''].uri}}", "\", \"--tuning_result_output_path=",
"{{$.outputs.artifacts[''tuning_result_output''].uri}}", "\", \"--kms_key_name=",
"{{$.inputs.parameters[''encryption_spec_key_name'']}}", "\", \"--gcp_resources_path=",
"{{$.outputs.parameters[''gcp_resources''].output_file}}", "\", \"--execution_metrics_path=",
"{{$.outputs.parameters[''execution_metrics''].output_file}}", "\", \"--use_custom_job=true\",
\"--use_json=true\", \"--log_level=ERROR\", \"--executor_input={{$.json_escape[1]}}\"]}}]}}"]}'
command:
- python3
- -u
- -m
- google_cloud_pipeline_components.container.v1.custom_job.launcher
image: gcr.io/ml-pipeline/google-cloud-pipeline-components:1.0.32
exec-automl-tabular-ensemble:
container:
args:
- --type
- CustomJob
- --project
- '{{$.inputs.parameters[''project'']}}'
- --location
- '{{$.inputs.parameters[''location'']}}'
- --gcp_resources
- '{{$.outputs.parameters[''gcp_resources''].output_file}}'
- --payload
- '{"Concat": ["{\"display_name\": \"automl-tabular-ensemble-{{$.pipeline_job_uuid}}-{{$.pipeline_task_uuid}}\",
\"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
"\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
{\"machine_type\": \"n1-highmem-8\"}, \"container_spec\": {\"image_uri\":\"",
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:dev", "\",
\"args\": [\"ensemble\", \"--transform_output_path=", "{{$.inputs.artifacts[''transform_output''].uri}}",
"\", \"--model_output_path=", "{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/model\",
\"--custom_model_output_path=", "{{$.inputs.parameters[''root_dir'']}}",
"/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/custom_model\", \"--error_file_path=",
"{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/error.pb\",
\"--export_custom_model=", "{{$.inputs.parameters[''export_additional_model_without_custom_ops'']}}",
"\", \"--metadata_path=", "{{$.inputs.artifacts[''metadata''].uri}}", "\",
\"--dataset_schema_path=", "{{$.inputs.artifacts[''dataset_schema''].uri}}",
"\", \"--tuning_result_input_path=", "{{$.inputs.artifacts[''tuning_result_input''].uri}}",
"\", \"--instance_baseline_path=", "{{$.inputs.artifacts[''instance_baseline''].uri}}",
"\", \"--warmup_data=", "{{$.inputs.artifacts[''warmup_data''].uri}}", "\",
\"--prediction_docker_uri=", "us-docker.pkg.dev/vertex-ai/automl-tabular/prediction-server:dev",
"\", \"--model_path=", "{{$.outputs.artifacts[''model''].uri}}", "\", \"--custom_model_path=",
"{{$.outputs.artifacts[''model_without_custom_ops''].uri}}", "\", \"--explanation_metadata_path=",
"{{$.outputs.parameters[''explanation_metadata''].output_file}}", ",", "{{$.outputs.artifacts[''explanation_metadata_artifact''].uri}}",
"\", \"--explanation_parameters_path=", "{{$.outputs.parameters[''explanation_parameters''].output_file}}",
"\", \"--model_architecture_path=", "{{$.outputs.artifacts[''model_architecture''].uri}}",
"\", \"--use_json=true\", \"--executor_input={{$.json_escape[1]}}\"]}}]}}"]}'
command:
- python3
- -u
- -m
- google_cloud_pipeline_components.container.v1.custom_job.launcher
image: gcr.io/ml-pipeline/google-cloud-pipeline-components:1.0.32
exec-automl-tabular-ensemble-2:
container:
args:
- --type
- CustomJob
- --project
- '{{$.inputs.parameters[''project'']}}'
- --location
- '{{$.inputs.parameters[''location'']}}'
- --gcp_resources
- '{{$.outputs.parameters[''gcp_resources''].output_file}}'
- --payload
- '{"Concat": ["{\"display_name\": \"automl-tabular-ensemble-{{$.pipeline_job_uuid}}-{{$.pipeline_task_uuid}}\",
\"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
"\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
{\"machine_type\": \"n1-highmem-8\"}, \"container_spec\": {\"image_uri\":\"",
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:dev", "\",
\"args\": [\"ensemble\", \"--transform_output_path=", "{{$.inputs.artifacts[''transform_output''].uri}}",
"\", \"--model_output_path=", "{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/model\",
\"--custom_model_output_path=", "{{$.inputs.parameters[''root_dir'']}}",
"/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/custom_model\", \"--error_file_path=",
"{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/error.pb\",
\"--export_custom_model=", "{{$.inputs.parameters[''export_additional_model_without_custom_ops'']}}",
"\", \"--metadata_path=", "{{$.inputs.artifacts[''metadata''].uri}}", "\",
\"--dataset_schema_path=", "{{$.inputs.artifacts[''dataset_schema''].uri}}",
"\", \"--tuning_result_input_path=", "{{$.inputs.artifacts[''tuning_result_input''].uri}}",
"\", \"--instance_baseline_path=", "{{$.inputs.artifacts[''instance_baseline''].uri}}",
"\", \"--warmup_data=", "{{$.inputs.artifacts[''warmup_data''].uri}}", "\",
\"--prediction_docker_uri=", "us-docker.pkg.dev/vertex-ai/automl-tabular/prediction-server:dev",
"\", \"--model_path=", "{{$.outputs.artifacts[''model''].uri}}", "\", \"--custom_model_path=",
"{{$.outputs.artifacts[''model_without_custom_ops''].uri}}", "\", \"--explanation_metadata_path=",
"{{$.outputs.parameters[''explanation_metadata''].output_file}}", ",", "{{$.outputs.artifacts[''explanation_metadata_artifact''].uri}}",
"\", \"--explanation_parameters_path=", "{{$.outputs.parameters[''explanation_parameters''].output_file}}",
"\", \"--model_architecture_path=", "{{$.outputs.artifacts[''model_architecture''].uri}}",
"\", \"--use_json=true\", \"--executor_input={{$.json_escape[1]}}\"]}}]}}"]}'
command:
- python3
- -u
- -m
- google_cloud_pipeline_components.container.v1.custom_job.launcher
image: gcr.io/ml-pipeline/google-cloud-pipeline-components:1.0.32
exec-automl-tabular-ensemble-3:
container:
args:
- --type
- CustomJob
- --project
- '{{$.inputs.parameters[''project'']}}'
- --location
- '{{$.inputs.parameters[''location'']}}'
- --gcp_resources
- '{{$.outputs.parameters[''gcp_resources''].output_file}}'
- --payload
- '{"Concat": ["{\"display_name\": \"automl-tabular-ensemble-{{$.pipeline_job_uuid}}-{{$.pipeline_task_uuid}}\",
\"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
"\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
{\"machine_type\": \"n1-highmem-8\"}, \"container_spec\": {\"image_uri\":\"",
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:dev", "\",
\"args\": [\"ensemble\", \"--transform_output_path=", "{{$.inputs.artifacts[''transform_output''].uri}}",
"\", \"--model_output_path=", "{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/model\",
\"--custom_model_output_path=", "{{$.inputs.parameters[''root_dir'']}}",
"/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/custom_model\", \"--error_file_path=",
"{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/error.pb\",
\"--export_custom_model=", "{{$.inputs.parameters[''export_additional_model_without_custom_ops'']}}",
"\", \"--metadata_path=", "{{$.inputs.artifacts[''metadata''].uri}}", "\",
\"--dataset_schema_path=", "{{$.inputs.artifacts[''dataset_schema''].uri}}",
"\", \"--tuning_result_input_path=", "{{$.inputs.artifacts[''tuning_result_input''].uri}}",
"\", \"--instance_baseline_path=", "{{$.inputs.artifacts[''instance_baseline''].uri}}",
"\", \"--warmup_data=", "{{$.inputs.artifacts[''warmup_data''].uri}}", "\",
\"--prediction_docker_uri=", "us-docker.pkg.dev/vertex-ai/automl-tabular/prediction-server:dev",
"\", \"--model_path=", "{{$.outputs.artifacts[''model''].uri}}", "\", \"--custom_model_path=",
"{{$.outputs.artifacts[''model_without_custom_ops''].uri}}", "\", \"--explanation_metadata_path=",
"{{$.outputs.parameters[''explanation_metadata''].output_file}}", ",", "{{$.outputs.artifacts[''explanation_metadata_artifact''].uri}}",
"\", \"--explanation_parameters_path=", "{{$.outputs.parameters[''explanation_parameters''].output_file}}",
"\", \"--model_architecture_path=", "{{$.outputs.artifacts[''model_architecture''].uri}}",
"\", \"--use_json=true\", \"--executor_input={{$.json_escape[1]}}\"]}}]}}"]}'
command:
- python3
- -u
- -m
- google_cloud_pipeline_components.container.v1.custom_job.launcher
image: gcr.io/ml-pipeline/google-cloud-pipeline-components:1.0.32
exec-automl-tabular-finalizer:
container:
args:
- --type
- CustomJob
- --project
- '{{$.inputs.parameters[''project'']}}'
- --location
- '{{$.inputs.parameters[''location'']}}'
- --gcp_resources
- '{{$.outputs.parameters[''gcp_resources''].output_file}}'
- --payload
- '{"Concat": ["{\"display_name\": \"automl-tabular-finalizer-{{$.pipeline_job_uuid}}-{{$.pipeline_task_uuid}}\",
\"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
"\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
{\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:dev", "\",
\"args\": [\"cancel_l2l_tuner\", \"--error_file_path=", "{{$.inputs.parameters[''root_dir'']}}",
"/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/error.pb\", \"--cleanup_lro_job_infos=",
"{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/lro\"]}}]}}"]}'
command:
- python3
- -u
- -m
- google_cloud_pipeline_components.container.v1.custom_job.launcher
image: gcr.io/ml-pipeline/google-cloud-pipeline-components:1.0.32
exec-automl-tabular-infra-validator:
container:
args:
- --executor_input
- '{{$}}'
image: us-docker.pkg.dev/vertex-ai/automl-tabular/prediction-server:dev
resources:
cpuLimit: 8.0
memoryLimit: 52.0
exec-automl-tabular-infra-validator-2:
container:
args:
- --executor_input
- '{{$}}'
image: us-docker.pkg.dev/vertex-ai/automl-tabular/prediction-server:dev
resources:
cpuLimit: 8.0
memoryLimit: 52.0
exec-automl-tabular-infra-validator-3:
container:
args:
- --executor_input
- '{{$}}'
image: us-docker.pkg.dev/vertex-ai/automl-tabular/prediction-server:dev
resources:
cpuLimit: 8.0
memoryLimit: 52.0
exec-automl-tabular-stage-1-tuner:
container:
args:
- --type
- CustomJob
- --project
- '{{$.inputs.parameters[''project'']}}'
- --location
- '{{$.inputs.parameters[''location'']}}'
- --gcp_resources
- '{{$.outputs.parameters[''gcp_resources''].output_file}}'
- --payload
- '{"Concat": ["{\"display_name\": \"automl-tabular-stage-1-tuner-{{$.pipeline_job_uuid}}-{{$.pipeline_task_uuid}}\",
\"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
"\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
{\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:dev", "\",
\"args\": [\"l2l_stage_1_tuner\", \"--transform_output_path=", "{{$.inputs.artifacts[''transform_output''].uri}}",
"\", \"--training_docker_uri=", "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:dev",
"\", \"--feature_selection_result_path=", "{{$.inputs.artifacts[''feature_ranking''].uri}}",
"\", \"--disable_early_stopping=", "{{$.inputs.parameters[''disable_early_stopping'']}}",
"\", \"--tune_feature_selection_rate=", "{{$.inputs.parameters[''tune_feature_selection_rate'']}}",
"\", \"--reduce_search_space_mode=", "{{$.inputs.parameters[''reduce_search_space_mode'']}}",
"\", \"--component_id={{$.pipeline_task_uuid}}\", \"--training_base_dir=",
"{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/train\",
\"--num_parallel_trial=", "{{$.inputs.parameters[''num_parallel_trials'']}}",
"\", \"--single_run_max_secs=", "{{$.inputs.parameters[''single_run_max_secs'']}}",
"\", \"--deadline_hours=", "{{$.inputs.parameters[''deadline_hours'']}}",
"\", \"--num_selected_trials=", "{{$.inputs.parameters[''num_selected_trials'']}}",
"\", \"--num_selected_features=", "{{$.inputs.parameters[''num_selected_features'']}}",
"\", \"--lro_job_info=", "{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/lro\",
\"--error_file_path=", "{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/error.pb\",
\"--metadata_path=", "{{$.inputs.artifacts[''metadata''].uri}}", "\", \"--materialized_train_split=",
"{{$.inputs.artifacts[''materialized_train_split''].uri}}", "\", \"--materialized_eval_split=",
"{{$.inputs.artifacts[''materialized_eval_split''].uri}}", "\", \"--is_distill=",
"{{$.inputs.parameters[''run_distillation'']}}", "\", \"--tuning_result_output_path=",
"{{$.outputs.artifacts[''tuning_result_output''].uri}}", "\", \"--kms_key_name=",
"{{$.inputs.parameters[''encryption_spec_key_name'']}}", "\", \"--gcp_resources_path=",
"{{$.outputs.parameters[''gcp_resources''].output_file}}", "\", \"--execution_metrics_path=",
"{{$.outputs.parameters[''execution_metrics''].output_file}}", "\", \"--use_json=true\",
\"--log_level=ERROR\", \"--executor_input={{$.json_escape[1]}}\"]}}]}}"]}'
command:
- python3
- -u
- -m
- google_cloud_pipeline_components.container.v1.custom_job.launcher
image: gcr.io/ml-pipeline/google-cloud-pipeline-components:1.0.32
exec-automl-tabular-stage-1-tuner-2:
container:
args:
- --type
- CustomJob
- --project
- '{{$.inputs.parameters[''project'']}}'
- --location
- '{{$.inputs.parameters[''location'']}}'
- --gcp_resources
- '{{$.outputs.parameters[''gcp_resources''].output_file}}'
- --payload
- '{"Concat": ["{\"display_name\": \"automl-tabular-stage-1-tuner-{{$.pipeline_job_uuid}}-{{$.pipeline_task_uuid}}\",
\"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
"\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
{\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:dev", "\",
\"args\": [\"l2l_stage_1_tuner\", \"--transform_output_path=", "{{$.inputs.artifacts[''transform_output''].uri}}",
"\", \"--training_docker_uri=", "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:dev",
"\", \"--feature_selection_result_path=", "{{$.inputs.artifacts[''feature_ranking''].uri}}",
"\", \"--disable_early_stopping=", "{{$.inputs.parameters[''disable_early_stopping'']}}",
"\", \"--tune_feature_selection_rate=", "{{$.inputs.parameters[''tune_feature_selection_rate'']}}",
"\", \"--reduce_search_space_mode=", "{{$.inputs.parameters[''reduce_search_space_mode'']}}",
"\", \"--component_id={{$.pipeline_task_uuid}}\", \"--training_base_dir=",
"{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/train\",
\"--num_parallel_trial=", "{{$.inputs.parameters[''num_parallel_trials'']}}",
"\", \"--single_run_max_secs=", "{{$.inputs.parameters[''single_run_max_secs'']}}",
"\", \"--deadline_hours=", "{{$.inputs.parameters[''deadline_hours'']}}",
"\", \"--num_selected_trials=", "{{$.inputs.parameters[''num_selected_trials'']}}",
"\", \"--num_selected_features=", "{{$.inputs.parameters[''num_selected_features'']}}",
"\", \"--lro_job_info=", "{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/lro\",
\"--error_file_path=", "{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/error.pb\",
\"--metadata_path=", "{{$.inputs.artifacts[''metadata''].uri}}", "\", \"--materialized_train_split=",
"{{$.inputs.artifacts[''materialized_train_split''].uri}}", "\", \"--materialized_eval_split=",
"{{$.inputs.artifacts[''materialized_eval_split''].uri}}", "\", \"--is_distill=",
"{{$.inputs.parameters[''run_distillation'']}}", "\", \"--tuning_result_output_path=",
"{{$.outputs.artifacts[''tuning_result_output''].uri}}", "\", \"--kms_key_name=",
"{{$.inputs.parameters[''encryption_spec_key_name'']}}", "\", \"--gcp_resources_path=",
"{{$.outputs.parameters[''gcp_resources''].output_file}}", "\", \"--execution_metrics_path=",
"{{$.outputs.parameters[''execution_metrics''].output_file}}", "\", \"--use_json=true\",
\"--log_level=ERROR\", \"--executor_input={{$.json_escape[1]}}\"]}}]}}"]}'
command:
- python3
- -u
- -m
- google_cloud_pipeline_components.container.v1.custom_job.launcher
image: gcr.io/ml-pipeline/google-cloud-pipeline-components:1.0.32
exec-automl-tabular-transform:
container:
args:
- --type
- CustomJob
- --project
- '{{$.inputs.parameters[''project'']}}'
- --location
- '{{$.inputs.parameters[''location'']}}'
- --gcp_resources
- '{{$.outputs.parameters[''gcp_resources''].output_file}}'
- --payload
- '{"Concat": ["{\"display_name\": \"automl-tabular-transform-{{$.pipeline_job_uuid}}-{{$.pipeline_task_uuid}}\",
\"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
"\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
{\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:dev", "\",
\"args\": [\"transform\", \"--transform_output_artifact_path=", "{{$.outputs.artifacts[''transform_output''].uri}}",
"\", \"--transform_output_path=", "{{$.inputs.parameters[''root_dir'']}}",
"/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/transform\", \"--materialized_splits_output_path=",
"{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/transform_materialized\",
\"--metadata_path=", "{{$.inputs.artifacts[''metadata''].uri}}", "\", \"--dataset_schema_path=",
"{{$.inputs.artifacts[''dataset_schema''].uri}}", "\", \"--train_split=",
"{{$.inputs.artifacts[''train_split''].uri}}", "\", \"--eval_split=", "{{$.inputs.artifacts[''eval_split''].uri}}",
"\", \"--test_split=", "{{$.inputs.artifacts[''test_split''].uri}}", "\",
\"--materialized_train_split=", "{{$.outputs.artifacts[''materialized_train_split''].uri}}",
"\", \"--materialized_eval_split=", "{{$.outputs.artifacts[''materialized_eval_split''].uri}}",
"\", \"--materialized_test_split=", "{{$.outputs.artifacts[''materialized_test_split''].uri}}",
"\", \"--training_schema_path=", "{{$.outputs.artifacts[''training_schema_uri''].uri}}",
"\", \"--job_name=automl-tabular-transform-{{$.pipeline_job_uuid}}-{{$.pipeline_task_uuid}}",
"\", \"--dataflow_project=", "{{$.inputs.parameters[''project'']}}", "\",
\"--error_file_path=", "{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/error.pb\",
\"--dataflow_staging_dir=", "{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/dataflow_staging\",
\"--dataflow_tmp_dir=", "{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/dataflow_tmp\",
\"--dataflow_max_num_workers=", "{{$.inputs.parameters[''dataflow_max_num_workers'']}}",
"\", \"--dataflow_machine_type=", "{{$.inputs.parameters[''dataflow_machine_type'']}}",
"\", \"--dataflow_worker_container_image=", "us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:dev",
"\", \"--dataflow_disk_size_gb=", "{{$.inputs.parameters[''dataflow_disk_size_gb'']}}",
"\", \"--dataflow_subnetwork_fully_qualified=", "{{$.inputs.parameters[''dataflow_subnetwork'']}}",
"\", \"--dataflow_use_public_ips=", "{{$.inputs.parameters[''dataflow_use_public_ips'']}}",
"\", \"--dataflow_kms_key=", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
"\", \"--dataflow_service_account=", "{{$.inputs.parameters[''dataflow_service_account'']}}",
"\", \"--lro_job_info=", "{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/lro\",
\"--gcp_resources_path=", "{{$.outputs.parameters[''gcp_resources''].output_file}}",
"\"]}}]}}"]}'
command:
- python3
- -u
- -m
- google_cloud_pipeline_components.container.v1.custom_job.launcher
image: gcr.io/ml-pipeline/google-cloud-pipeline-components:1.0.32
exec-automl-tabular-transform-2:
container:
args:
- --type
- CustomJob
- --project
- '{{$.inputs.parameters[''project'']}}'
- --location
- '{{$.inputs.parameters[''location'']}}'
- --gcp_resources
- '{{$.outputs.parameters[''gcp_resources''].output_file}}'
- --payload
- '{"Concat": ["{\"display_name\": \"automl-tabular-transform-{{$.pipeline_job_uuid}}-{{$.pipeline_task_uuid}}\",
\"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
"\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
{\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:dev", "\",
\"args\": [\"transform\", \"--transform_output_artifact_path=", "{{$.outputs.artifacts[''transform_output''].uri}}",
"\", \"--transform_output_path=", "{{$.inputs.parameters[''root_dir'']}}",
"/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/transform\", \"--materialized_splits_output_path=",
"{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/transform_materialized\",
\"--metadata_path=", "{{$.inputs.artifacts[''metadata''].uri}}", "\", \"--dataset_schema_path=",
"{{$.inputs.artifacts[''dataset_schema''].uri}}", "\", \"--train_split=",
"{{$.inputs.artifacts[''train_split''].uri}}", "\", \"--eval_split=", "{{$.inputs.artifacts[''eval_split''].uri}}",
"\", \"--test_split=", "{{$.inputs.artifacts[''test_split''].uri}}", "\",
\"--materialized_train_split=", "{{$.outputs.artifacts[''materialized_train_split''].uri}}",
"\", \"--materialized_eval_split=", "{{$.outputs.artifacts[''materialized_eval_split''].uri}}",
"\", \"--materialized_test_split=", "{{$.outputs.artifacts[''materialized_test_split''].uri}}",
"\", \"--training_schema_path=", "{{$.outputs.artifacts[''training_schema_uri''].uri}}",
"\", \"--job_name=automl-tabular-transform-{{$.pipeline_job_uuid}}-{{$.pipeline_task_uuid}}",
"\", \"--dataflow_project=", "{{$.inputs.parameters[''project'']}}", "\",
\"--error_file_path=", "{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/error.pb\",
\"--dataflow_staging_dir=", "{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/dataflow_staging\",
\"--dataflow_tmp_dir=", "{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/dataflow_tmp\",
\"--dataflow_max_num_workers=", "{{$.inputs.parameters[''dataflow_max_num_workers'']}}",
"\", \"--dataflow_machine_type=", "{{$.inputs.parameters[''dataflow_machine_type'']}}",
"\", \"--dataflow_worker_container_image=", "us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:dev",
"\", \"--dataflow_disk_size_gb=", "{{$.inputs.parameters[''dataflow_disk_size_gb'']}}",
"\", \"--dataflow_subnetwork_fully_qualified=", "{{$.inputs.parameters[''dataflow_subnetwork'']}}",
"\", \"--dataflow_use_public_ips=", "{{$.inputs.parameters[''dataflow_use_public_ips'']}}",
"\", \"--dataflow_kms_key=", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
"\", \"--dataflow_service_account=", "{{$.inputs.parameters[''dataflow_service_account'']}}",
"\", \"--lro_job_info=", "{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/lro\",
\"--gcp_resources_path=", "{{$.outputs.parameters[''gcp_resources''].output_file}}",
"\"]}}]}}"]}'
command:
- python3
- -u
- -m
- google_cloud_pipeline_components.container.v1.custom_job.launcher
image: gcr.io/ml-pipeline/google-cloud-pipeline-components:1.0.32
exec-bool-identity:
container:
args:
- --executor_input
- '{{$}}'
- --function_to_execute
- _bool_identity
command:
- sh
- -ec
- 'program_path=$(mktemp -d)
printf "%s" "$0" > "$program_path/ephemeral_component.py"
python3 -m kfp.components.executor_main --component_module_path "$program_path/ephemeral_component.py" "$@"
'
- "\nimport kfp\nfrom kfp import dsl\nfrom kfp.dsl import *\nfrom typing import\
\ *\n\ndef _bool_identity(value: bool) -> str:\n \"\"\"Returns boolean\
\ value.\n\n Args:\n value: Boolean value to return\n\n Returns:\n\
\ Boolean value.\n \"\"\"\n return 'true' if value else 'false'\n\n"
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:dev
exec-bool-identity-2:
container:
args:
- --executor_input
- '{{$}}'
- --function_to_execute
- _bool_identity
command:
- sh
- -ec
- 'program_path=$(mktemp -d)
printf "%s" "$0" > "$program_path/ephemeral_component.py"
python3 -m kfp.components.executor_main --component_module_path "$program_path/ephemeral_component.py" "$@"
'
- "\nimport kfp\nfrom kfp import dsl\nfrom kfp.dsl import *\nfrom typing import\
\ *\n\ndef _bool_identity(value: bool) -> str:\n \"\"\"Returns boolean\
\ value.\n\n Args:\n value: Boolean value to return\n\n Returns:\n\
\ Boolean value.\n \"\"\"\n return 'true' if value else 'false'\n\n"
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:dev
exec-bool-identity-3:
container:
args:
- --executor_input
- '{{$}}'
- --function_to_execute
- _bool_identity
command:
- sh
- -ec
- 'program_path=$(mktemp -d)
printf "%s" "$0" > "$program_path/ephemeral_component.py"
python3 -m kfp.components.executor_main --component_module_path "$program_path/ephemeral_component.py" "$@"
'
- "\nimport kfp\nfrom kfp import dsl\nfrom kfp.dsl import *\nfrom typing import\
\ *\n\ndef _bool_identity(value: bool) -> str:\n \"\"\"Returns boolean\
\ value.\n\n Args:\n value: Boolean value to return\n\n Returns:\n\
\ Boolean value.\n \"\"\"\n return 'true' if value else 'false'\n\n"
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:dev
exec-calculate-training-parameters:
container:
args:
- --executor_input
- '{{$}}'
- --function_to_execute
- _calculate_training_parameters
command:
- sh
- -ec
- 'program_path=$(mktemp -d)
printf "%s" "$0" > "$program_path/ephemeral_component.py"
python3 -m kfp.components.executor_main --component_module_path "$program_path/ephemeral_component.py" "$@"
'
- "\nimport kfp\nfrom kfp import dsl\nfrom kfp.dsl import *\nfrom typing import\
\ *\n\ndef _calculate_training_parameters(\n stage_1_num_parallel_trials:\
\ int,\n train_budget_milli_node_hours: float,\n stage_2_num_parallel_trials:\
\ int,\n run_distillation: bool,\n is_skip_architecture_search: bool\
\ = False,\n fast_testing: bool = False,\n) -> NamedTuple('Outputs',\
\ [\n ('stage_1_deadline_hours', float), ('stage_1_num_selected_trials',\
\ int),\n ('stage_1_single_run_max_secs', int), ('stage_2_deadline_hours',\
\ float),\n ('stage_2_single_run_max_secs', int),\n ('distill_stage_1_deadline_hours',\
\ float), ('reduce_search_space_mode', str)\n]):\n \"\"\"Calculates training\
\ parameters.\n\n Args:\n stage_1_num_parallel_trials: Number of parallel\
\ trails for stage 1.\n train_budget_milli_node_hours: The train budget\
\ of creating this model,\n expressed in milli node hours i.e. 1,000\
\ value in this field means 1 node\n hour.\n stage_2_num_parallel_trials:\
\ Number of parallel trails for stage 2.\n run_distillation: Whether\
\ to run distill in the training pipeline.\n is_skip_architecture_search:\
\ If component is being called in the\n skip_architecture_search pipeline.\n\
\ fast_testing: Internal flag used for presubmit tests.\n\n Returns:\n\
\ stage_1_deadline_hours: Maximum number of hours to run stage 1.\n\
\ stage_1_num_selected_trials: Number of selected trails for stage\
\ 1.\n stage_1_single_run_max_secs: Maximum number seconds to for a\
\ single stage\n 1\n training trial.\n stage_2_deadline_hours:\
\ Maximum number of hours to run stage 2.\n stage_2_single_run_max_secs:\
\ Maximum number seconds to for a single stage\n 2\n training\
\ trial.\n distill_stage_1_deadline_hours: Maximum number of hours\
\ to run stage 1 for\n the model distillation.\n reduce_search_space_mode:\
\ The reduce search space mode. Possible values:\n minimal, regular,\
\ full.\n \"\"\"\n # pylint: disable=g-import-not-at-top,import-outside-toplevel,redefined-outer-name\n\
\ import collections\n import math\n # pylint: enable=g-import-not-at-top,import-outside-toplevel,redefined-outer-name\n\
\ num_folds = 5\n distill_total_trials = 100\n\n stage_1_deadline_hours\
\ = -1.0\n stage_1_num_selected_trials = -1\n stage_1_single_run_max_secs\
\ = -1\n stage_2_deadline_hours = -1.0\n stage_2_single_run_max_secs =\
\ -1\n distill_stage_1_deadline_hours = 1.0\n reduce_search_space_mode\
\ = 'regular'\n\n if is_skip_architecture_search:\n stage_2_deadline_hours\
\ = train_budget_milli_node_hours / 1000.0\n stage_2_single_run_max_secs\
\ = int(stage_2_deadline_hours * 3600.0 / 1.3)\n else:\n hours = float(train_budget_milli_node_hours)\
\ / 1000.0\n multiplier = stage_1_num_parallel_trials * hours / 500.0\n\
\ stage_1_single_run_max_secs = int(math.sqrt(multiplier) * 2400.0)\n\
\ phase_2_rounds = int(\n math.sqrt(multiplier) * 100 / stage_2_num_parallel_trials\
\ + 0.5)\n if phase_2_rounds < 1:\n phase_2_rounds = 1\n\n #\
\ All of magic number \"1.3\" above is because the trial doesn't\n #\
\ always finish in time_per_trial. 1.3 is an empirical safety margin here.\n\
\ stage_1_deadline_secs = int(hours * 3600.0 - 1.3 *\n \
\ stage_1_single_run_max_secs * phase_2_rounds)\n\n \
\ if stage_1_deadline_secs < hours * 3600.0 * 0.5:\n stage_1_deadline_secs\
\ = int(hours * 3600.0 * 0.5)\n # Phase 1 deadline is the same as phase\
\ 2 deadline in this case. Phase 2\n # can't finish in time after the\
\ deadline is cut, so adjust the time per\n # trial to meet the deadline.\n\
\ stage_1_single_run_max_secs = int(stage_1_deadline_secs /\n \
\ (1.3 * phase_2_rounds))\n\n reduce_search_space_mode\
\ = 'minimal'\n if multiplier > 2:\n reduce_search_space_mode =\
\ 'regular'\n if multiplier > 4:\n reduce_search_space_mode = 'full'\n\
\n # Stage 2 number of trials is stage_1_num_selected_trials *\n #\
\ num_folds, which should be equal to phase_2_rounds *\n # stage_2_num_parallel_trials.\
\ Use this information to calculate\n # stage_1_num_selected_trials:\n\
\ stage_1_num_selected_trials = int(phase_2_rounds *\n \
\ stage_2_num_parallel_trials / num_folds)\n stage_1_deadline_hours\
\ = stage_1_deadline_secs / 3600.0\n\n stage_2_deadline_hours = hours\
\ - stage_1_deadline_hours\n stage_2_single_run_max_secs = stage_1_single_run_max_secs\n\
\n if run_distillation:\n # All of magic number \"1.3\" above is\
\ because the trial doesn't always\n # finish in time_per_trial. 1.3\
\ is an empirical safety margin here.\n distill_stage_1_deadline_hours\
\ = math.ceil(\n float(distill_total_trials) / stage_1_num_parallel_trials\n\
\ ) * stage_1_single_run_max_secs * 1.3 / 3600.0\n\n if fast_testing:\n\
\ distill_stage_1_deadline_hours = 0.2\n stage_1_deadline_hours =\
\ 0.2\n stage_1_single_run_max_secs = 1\n stage_2_deadline_hours =\
\ 0.2\n stage_2_single_run_max_secs = 1\n\n return collections.namedtuple('Outputs',\
\ [\n 'stage_1_deadline_hours', 'stage_1_num_selected_trials',\n \
\ 'stage_1_single_run_max_secs', 'stage_2_deadline_hours',\n 'stage_2_single_run_max_secs',\
\ 'distill_stage_1_deadline_hours',\n 'reduce_search_space_mode'\n\
\ ])(stage_1_deadline_hours, stage_1_num_selected_trials,\n stage_1_single_run_max_secs,\
\ stage_2_deadline_hours,\n stage_2_single_run_max_secs, distill_stage_1_deadline_hours,\n\
\ reduce_search_space_mode)\n\n"
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:dev
exec-calculate-training-parameters-2:
container:
args:
- --executor_input
- '{{$}}'
- --function_to_execute
- _calculate_training_parameters
command:
- sh
- -ec
- 'program_path=$(mktemp -d)
printf "%s" "$0" > "$program_path/ephemeral_component.py"
python3 -m kfp.components.executor_main --component_module_path "$program_path/ephemeral_component.py" "$@"
'
- "\nimport kfp\nfrom kfp import dsl\nfrom kfp.dsl import *\nfrom typing import\
\ *\n\ndef _calculate_training_parameters(\n stage_1_num_parallel_trials:\
\ int,\n train_budget_milli_node_hours: float,\n stage_2_num_parallel_trials:\
\ int,\n run_distillation: bool,\n is_skip_architecture_search: bool\
\ = False,\n fast_testing: bool = False,\n) -> NamedTuple('Outputs',\
\ [\n ('stage_1_deadline_hours', float), ('stage_1_num_selected_trials',\
\ int),\n ('stage_1_single_run_max_secs', int), ('stage_2_deadline_hours',\
\ float),\n ('stage_2_single_run_max_secs', int),\n ('distill_stage_1_deadline_hours',\
\ float), ('reduce_search_space_mode', str)\n]):\n \"\"\"Calculates training\
\ parameters.\n\n Args:\n stage_1_num_parallel_trials: Number of parallel\
\ trails for stage 1.\n train_budget_milli_node_hours: The train budget\
\ of creating this model,\n expressed in milli node hours i.e. 1,000\
\ value in this field means 1 node\n hour.\n stage_2_num_parallel_trials:\
\ Number of parallel trails for stage 2.\n run_distillation: Whether\
\ to run distill in the training pipeline.\n is_skip_architecture_search:\
\ If component is being called in the\n skip_architecture_search pipeline.\n\
\ fast_testing: Internal flag used for presubmit tests.\n\n Returns:\n\
\ stage_1_deadline_hours: Maximum number of hours to run stage 1.\n\
\ stage_1_num_selected_trials: Number of selected trails for stage\
\ 1.\n stage_1_single_run_max_secs: Maximum number seconds to for a\
\ single stage\n 1\n training trial.\n stage_2_deadline_hours:\
\ Maximum number of hours to run stage 2.\n stage_2_single_run_max_secs:\
\ Maximum number seconds to for a single stage\n 2\n training\
\ trial.\n distill_stage_1_deadline_hours: Maximum number of hours\
\ to run stage 1 for\n the model distillation.\n reduce_search_space_mode:\
\ The reduce search space mode. Possible values:\n minimal, regular,\
\ full.\n \"\"\"\n # pylint: disable=g-import-not-at-top,import-outside-toplevel,redefined-outer-name\n\
\ import collections\n import math\n # pylint: enable=g-import-not-at-top,import-outside-toplevel,redefined-outer-name\n\
\ num_folds = 5\n distill_total_trials = 100\n\n stage_1_deadline_hours\
\ = -1.0\n stage_1_num_selected_trials = -1\n stage_1_single_run_max_secs\
\ = -1\n stage_2_deadline_hours = -1.0\n stage_2_single_run_max_secs =\
\ -1\n distill_stage_1_deadline_hours = 1.0\n reduce_search_space_mode\
\ = 'regular'\n\n if is_skip_architecture_search:\n stage_2_deadline_hours\
\ = train_budget_milli_node_hours / 1000.0\n stage_2_single_run_max_secs\
\ = int(stage_2_deadline_hours * 3600.0 / 1.3)\n else:\n hours = float(train_budget_milli_node_hours)\
\ / 1000.0\n multiplier = stage_1_num_parallel_trials * hours / 500.0\n\
\ stage_1_single_run_max_secs = int(math.sqrt(multiplier) * 2400.0)\n\
\ phase_2_rounds = int(\n math.sqrt(multiplier) * 100 / stage_2_num_parallel_trials\
\ + 0.5)\n if phase_2_rounds < 1:\n phase_2_rounds = 1\n\n #\
\ All of magic number \"1.3\" above is because the trial doesn't\n #\
\ always finish in time_per_trial. 1.3 is an empirical safety margin here.\n\
\ stage_1_deadline_secs = int(hours * 3600.0 - 1.3 *\n \
\ stage_1_single_run_max_secs * phase_2_rounds)\n\n \
\ if stage_1_deadline_secs < hours * 3600.0 * 0.5:\n stage_1_deadline_secs\
\ = int(hours * 3600.0 * 0.5)\n # Phase 1 deadline is the same as phase\
\ 2 deadline in this case. Phase 2\n # can't finish in time after the\
\ deadline is cut, so adjust the time per\n # trial to meet the deadline.\n\
\ stage_1_single_run_max_secs = int(stage_1_deadline_secs /\n \
\ (1.3 * phase_2_rounds))\n\n reduce_search_space_mode\
\ = 'minimal'\n if multiplier > 2:\n reduce_search_space_mode =\
\ 'regular'\n if multiplier > 4:\n reduce_search_space_mode = 'full'\n\
\n # Stage 2 number of trials is stage_1_num_selected_trials *\n #\
\ num_folds, which should be equal to phase_2_rounds *\n # stage_2_num_parallel_trials.\
\ Use this information to calculate\n # stage_1_num_selected_trials:\n\
\ stage_1_num_selected_trials = int(phase_2_rounds *\n \
\ stage_2_num_parallel_trials / num_folds)\n stage_1_deadline_hours\
\ = stage_1_deadline_secs / 3600.0\n\n stage_2_deadline_hours = hours\
\ - stage_1_deadline_hours\n stage_2_single_run_max_secs = stage_1_single_run_max_secs\n\
\n if run_distillation:\n # All of magic number \"1.3\" above is\
\ because the trial doesn't always\n # finish in time_per_trial. 1.3\
\ is an empirical safety margin here.\n distill_stage_1_deadline_hours\
\ = math.ceil(\n float(distill_total_trials) / stage_1_num_parallel_trials\n\
\ ) * stage_1_single_run_max_secs * 1.3 / 3600.0\n\n if fast_testing:\n\
\ distill_stage_1_deadline_hours = 0.2\n stage_1_deadline_hours =\
\ 0.2\n stage_1_single_run_max_secs = 1\n stage_2_deadline_hours =\
\ 0.2\n stage_2_single_run_max_secs = 1\n\n return collections.namedtuple('Outputs',\
\ [\n 'stage_1_deadline_hours', 'stage_1_num_selected_trials',\n \
\ 'stage_1_single_run_max_secs', 'stage_2_deadline_hours',\n 'stage_2_single_run_max_secs',\
\ 'distill_stage_1_deadline_hours',\n 'reduce_search_space_mode'\n\
\ ])(stage_1_deadline_hours, stage_1_num_selected_trials,\n stage_1_single_run_max_secs,\
\ stage_2_deadline_hours,\n stage_2_single_run_max_secs, distill_stage_1_deadline_hours,\n\
\ reduce_search_space_mode)\n\n"
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:dev
exec-feature-attribution:
container:
args:
- --task
- explanation
- --setup_file
- /setup.py
- --project_id
- '{{$.inputs.parameters[''project'']}}'
- --location
- '{{$.inputs.parameters[''location'']}}'
- --batch_prediction_gcs_source
- '{{$.inputs.artifacts[''predictions_gcs_source''].uri}}'
- --batch_prediction_format
- '{{$.inputs.parameters[''predictions_format'']}}'
- --root_dir
- '{{$.inputs.parameters[''root_dir'']}}/{{$.pipeline_job_uuid}}-{{$.pipeline_task_uuid}}'
- --dataflow_job_prefix
- evaluation-feautre-attribution-{{$.pipeline_job_uuid}}-{{$.pipeline_task_uuid}}
- --dataflow_service_account
- '{{$.inputs.parameters[''dataflow_service_account'']}}'
- --dataflow_disk_size
- '{{$.inputs.parameters[''dataflow_disk_size'']}}'
- --dataflow_machine_type
- '{{$.inputs.parameters[''dataflow_machine_type'']}}'
- --dataflow_workers_num
- '{{$.inputs.parameters[''dataflow_workers_num'']}}'
- --dataflow_max_workers_num
- '{{$.inputs.parameters[''dataflow_max_workers_num'']}}'
- --dataflow_subnetwork
- '{{$.inputs.parameters[''dataflow_subnetwork'']}}'
- --dataflow_use_public_ips
- '{{$.inputs.parameters[''dataflow_use_public_ips'']}}'
- --kms_key_name
- '{{$.inputs.parameters[''encryption_spec_key_name'']}}'
- --gcs_output_path
- '{{$.outputs.artifacts[''feature_attributions''].uri}}'
- --gcp_resources
- '{{$.outputs.parameters[''gcp_resources''].output_file}}'
- --executor_input
- '{{$}}'
command:
- python
- /main.py
image: gcr.io/ml-pipeline/model-evaluation:v0.7
exec-feature-attribution-2:
container:
args:
- --task
- explanation
- --setup_file
- /setup.py
- --project_id
- '{{$.inputs.parameters[''project'']}}'
- --location
- '{{$.inputs.parameters[''location'']}}'
- --batch_prediction_gcs_source
- '{{$.inputs.artifacts[''predictions_gcs_source''].uri}}'
- --batch_prediction_format
- '{{$.inputs.parameters[''predictions_format'']}}'
- --root_dir
- '{{$.inputs.parameters[''root_dir'']}}/{{$.pipeline_job_uuid}}-{{$.pipeline_task_uuid}}'
- --dataflow_job_prefix
- evaluation-feautre-attribution-{{$.pipeline_job_uuid}}-{{$.pipeline_task_uuid}}
- --dataflow_service_account
- '{{$.inputs.parameters[''dataflow_service_account'']}}'
- --dataflow_disk_size
- '{{$.inputs.parameters[''dataflow_disk_size'']}}'
- --dataflow_machine_type
- '{{$.inputs.parameters[''dataflow_machine_type'']}}'
- --dataflow_workers_num
- '{{$.inputs.parameters[''dataflow_workers_num'']}}'
- --dataflow_max_workers_num
- '{{$.inputs.parameters[''dataflow_max_workers_num'']}}'
- --dataflow_subnetwork
- '{{$.inputs.parameters[''dataflow_subnetwork'']}}'
- --dataflow_use_public_ips
- '{{$.inputs.parameters[''dataflow_use_public_ips'']}}'
- --kms_key_name
- '{{$.inputs.parameters[''encryption_spec_key_name'']}}'
- --gcs_output_path
- '{{$.outputs.artifacts[''feature_attributions''].uri}}'
- --gcp_resources
- '{{$.outputs.parameters[''gcp_resources''].output_file}}'
- --executor_input
- '{{$}}'
command:
- python
- /main.py
image: gcr.io/ml-pipeline/model-evaluation:v0.7
exec-feature-attribution-3:
container:
args:
- --task
- explanation
- --setup_file
- /setup.py
- --project_id
- '{{$.inputs.parameters[''project'']}}'
- --location
- '{{$.inputs.parameters[''location'']}}'
- --batch_prediction_gcs_source
- '{{$.inputs.artifacts[''predictions_gcs_source''].uri}}'
- --batch_prediction_format
- '{{$.inputs.parameters[''predictions_format'']}}'
- --root_dir
- '{{$.inputs.parameters[''root_dir'']}}/{{$.pipeline_job_uuid}}-{{$.pipeline_task_uuid}}'
- --dataflow_job_prefix
- evaluation-feautre-attribution-{{$.pipeline_job_uuid}}-{{$.pipeline_task_uuid}}
- --dataflow_service_account
- '{{$.inputs.parameters[''dataflow_service_account'']}}'
- --dataflow_disk_size
- '{{$.inputs.parameters[''dataflow_disk_size'']}}'
- --dataflow_machine_type
- '{{$.inputs.parameters[''dataflow_machine_type'']}}'
- --dataflow_workers_num
- '{{$.inputs.parameters[''dataflow_workers_num'']}}'
- --dataflow_max_workers_num
- '{{$.inputs.parameters[''dataflow_max_workers_num'']}}'
- --dataflow_subnetwork
- '{{$.inputs.parameters[''dataflow_subnetwork'']}}'
- --dataflow_use_public_ips
- '{{$.inputs.parameters[''dataflow_use_public_ips'']}}'
- --kms_key_name
- '{{$.inputs.parameters[''encryption_spec_key_name'']}}'
- --gcs_output_path
- '{{$.outputs.artifacts[''feature_attributions''].uri}}'
- --gcp_resources
- '{{$.outputs.parameters[''gcp_resources''].output_file}}'
- --executor_input
- '{{$}}'
command:
- python
- /main.py
image: gcr.io/ml-pipeline/model-evaluation:v0.7
exec-importer:
importer:
artifactUri:
runtimeParameter: uri
typeSchema:
schemaTitle: system.Artifact
schemaVersion: 0.0.1
exec-merge-materialized-splits:
container:
args:
- --executor_input
- '{{$}}'
- --function_to_execute
- _merge_materialized_splits
command:
- sh
- -ec
- 'program_path=$(mktemp -d)
printf "%s" "$0" > "$program_path/ephemeral_component.py"
python3 -m kfp.components.executor_main --component_module_path "$program_path/ephemeral_component.py" "$@"
'
- "\nimport kfp\nfrom kfp import dsl\nfrom kfp.dsl import *\nfrom typing import\
\ *\n\ndef _merge_materialized_splits(\n split_0: dsl.InputPath('MaterializedSplit'),\n\
\ split_1: dsl.InputPath('MaterializedSplit'),\n splits: dsl.OutputPath('MaterializedSplit'),\n\
):\n \"\"\"Merge two materialized splits.\n\n Args:\n split_0: The\
\ first materialized split.\n split_1: The second materialized split.\n\
\ splits: The merged materialized split.\n \"\"\"\n with open(split_0,\
\ 'r') as f:\n split_0_content = f.read()\n with open(split_1, 'r')\
\ as f:\n split_1_content = f.read()\n with open(splits, 'w') as f:\n\
\ f.write(','.join([split_0_content, split_1_content]))\n\n"
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:dev
exec-model-batch-explanation:
container:
args:
- --type
- BatchPredictionJob
- --payload
- '{"Concat": ["{", "\"display_name\": \"", "{{$.inputs.parameters[''job_display_name'']}}",
"\", ", " \"input_config\": {", "\"instances_format\": \"", "{{$.inputs.parameters[''instances_format'']}}",
"\"", ", \"gcs_source\": {", "\"uris\":", "{{$.inputs.parameters[''gcs_source_uris'']}}",
"}", ", \"bigquery_source\": {", "\"input_uri\": \"", "{{$.inputs.parameters[''bigquery_source_input_uri'']}}",
"\"", "}", "}", ", \"model_parameters\": ", "{{$.inputs.parameters[''model_parameters'']}}",
", \"output_config\": {", "\"predictions_format\": \"", "{{$.inputs.parameters[''predictions_format'']}}",
"\"", ", \"gcs_destination\": {", "\"output_uri_prefix\": \"", "{{$.inputs.parameters[''gcs_destination_output_uri_prefix'']}}",
"\"", "}", ", \"bigquery_destination\": {", "\"output_uri\": \"", "{{$.inputs.parameters[''bigquery_destination_output_uri'']}}",
"\"", "}", "}", ", \"dedicated_resources\": {", "\"machine_spec\": {", "\"machine_type\":
\"", "{{$.inputs.parameters[''machine_type'']}}", "\"", ", \"accelerator_type\":
\"", "{{$.inputs.parameters[''accelerator_type'']}}", "\"", ", \"accelerator_count\":
", "{{$.inputs.parameters[''accelerator_count'']}}", "}", ", \"starting_replica_count\":
", "{{$.inputs.parameters[''starting_replica_count'']}}", ", \"max_replica_count\":
", "{{$.inputs.parameters[''max_replica_count'']}}", "}", ", \"manual_batch_tuning_parameters\":
{", "\"batch_size\": ", "{{$.inputs.parameters[''manual_batch_tuning_parameters_batch_size'']}}",
"}", ", \"generate_explanation\": ", "{{$.inputs.parameters[''generate_explanation'']}}",
", \"explanation_spec\": {", "\"parameters\": ", "{{$.inputs.parameters[''explanation_parameters'']}}",
", \"metadata\": ", "{{$.inputs.parameters[''explanation_metadata'']}}",
"}", ", \"explanation_metadata_artifact\": \"", "{{$.inputs.artifacts[''explanation_metadata_artifact''].uri}}",
"\"", ", \"labels\": ", "{{$.inputs.parameters[''labels'']}}", ", \"encryption_spec\":
{\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
"\"}", "}"]}'
- --project
- '{{$.inputs.parameters[''project'']}}'
- --location
- '{{$.inputs.parameters[''location'']}}'
- --gcp_resources
- '{{$.outputs.parameters[''gcp_resources''].output_file}}'
- --executor_input
- '{{$}}'
command:
- python3
- -u
- -m
- launcher
image: gcr.io/ml-pipeline/automl-tables-private:1.0.13
exec-model-batch-explanation-2:
container:
args:
- --type
- BatchPredictionJob
- --payload
- '{"Concat": ["{", "\"display_name\": \"", "{{$.inputs.parameters[''job_display_name'']}}",
"\", ", " \"input_config\": {", "\"instances_format\": \"", "{{$.inputs.parameters[''instances_format'']}}",
"\"", ", \"gcs_source\": {", "\"uris\":", "{{$.inputs.parameters[''gcs_source_uris'']}}",
"}", ", \"bigquery_source\": {", "\"input_uri\": \"", "{{$.inputs.parameters[''bigquery_source_input_uri'']}}",
"\"", "}", "}", ", \"model_parameters\": ", "{{$.inputs.parameters[''model_parameters'']}}",
", \"output_config\": {", "\"predictions_format\": \"", "{{$.inputs.parameters[''predictions_format'']}}",
"\"", ", \"gcs_destination\": {", "\"output_uri_prefix\": \"", "{{$.inputs.parameters[''gcs_destination_output_uri_prefix'']}}",
"\"", "}", ", \"bigquery_destination\": {", "\"output_uri\": \"", "{{$.inputs.parameters[''bigquery_destination_output_uri'']}}",
"\"", "}", "}", ", \"dedicated_resources\": {", "\"machine_spec\": {", "\"machine_type\":
\"", "{{$.inputs.parameters[''machine_type'']}}", "\"", ", \"accelerator_type\":
\"", "{{$.inputs.parameters[''accelerator_type'']}}", "\"", ", \"accelerator_count\":
", "{{$.inputs.parameters[''accelerator_count'']}}", "}", ", \"starting_replica_count\":
", "{{$.inputs.parameters[''starting_replica_count'']}}", ", \"max_replica_count\":
", "{{$.inputs.parameters[''max_replica_count'']}}", "}", ", \"manual_batch_tuning_parameters\":
{", "\"batch_size\": ", "{{$.inputs.parameters[''manual_batch_tuning_parameters_batch_size'']}}",
"}", ", \"generate_explanation\": ", "{{$.inputs.parameters[''generate_explanation'']}}",
", \"explanation_spec\": {", "\"parameters\": ", "{{$.inputs.parameters[''explanation_parameters'']}}",
", \"metadata\": ", "{{$.inputs.parameters[''explanation_metadata'']}}",
"}", ", \"explanation_metadata_artifact\": \"", "{{$.inputs.artifacts[''explanation_metadata_artifact''].uri}}",
"\"", ", \"labels\": ", "{{$.inputs.parameters[''labels'']}}", ", \"encryption_spec\":
{\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
"\"}", "}"]}'
- --project
- '{{$.inputs.parameters[''project'']}}'
- --location
- '{{$.inputs.parameters[''location'']}}'
- --gcp_resources
- '{{$.outputs.parameters[''gcp_resources''].output_file}}'
- --executor_input
- '{{$}}'
command:
- python3
- -u
- -m
- launcher
image: gcr.io/ml-pipeline/automl-tables-private:1.0.13
exec-model-batch-explanation-3:
container:
args:
- --type
- BatchPredictionJob
- --payload
- '{"Concat": ["{", "\"display_name\": \"", "{{$.inputs.parameters[''job_display_name'']}}",
"\", ", " \"input_config\": {", "\"instances_format\": \"", "{{$.inputs.parameters[''instances_format'']}}",
"\"", ", \"gcs_source\": {", "\"uris\":", "{{$.inputs.parameters[''gcs_source_uris'']}}",
"}", ", \"bigquery_source\": {", "\"input_uri\": \"", "{{$.inputs.parameters[''bigquery_source_input_uri'']}}",
"\"", "}", "}", ", \"model_parameters\": ", "{{$.inputs.parameters[''model_parameters'']}}",
", \"output_config\": {", "\"predictions_format\": \"", "{{$.inputs.parameters[''predictions_format'']}}",
"\"", ", \"gcs_destination\": {", "\"output_uri_prefix\": \"", "{{$.inputs.parameters[''gcs_destination_output_uri_prefix'']}}",
"\"", "}", ", \"bigquery_destination\": {", "\"output_uri\": \"", "{{$.inputs.parameters[''bigquery_destination_output_uri'']}}",
"\"", "}", "}", ", \"dedicated_resources\": {", "\"machine_spec\": {", "\"machine_type\":
\"", "{{$.inputs.parameters[''machine_type'']}}", "\"", ", \"accelerator_type\":
\"", "{{$.inputs.parameters[''accelerator_type'']}}", "\"", ", \"accelerator_count\":
", "{{$.inputs.parameters[''accelerator_count'']}}", "}", ", \"starting_replica_count\":
", "{{$.inputs.parameters[''starting_replica_count'']}}", ", \"max_replica_count\":
", "{{$.inputs.parameters[''max_replica_count'']}}", "}", ", \"manual_batch_tuning_parameters\":
{", "\"batch_size\": ", "{{$.inputs.parameters[''manual_batch_tuning_parameters_batch_size'']}}",
"}", ", \"generate_explanation\": ", "{{$.inputs.parameters[''generate_explanation'']}}",
", \"explanation_spec\": {", "\"parameters\": ", "{{$.inputs.parameters[''explanation_parameters'']}}",
", \"metadata\": ", "{{$.inputs.parameters[''explanation_metadata'']}}",
"}", ", \"explanation_metadata_artifact\": \"", "{{$.inputs.artifacts[''explanation_metadata_artifact''].uri}}",
"\"", ", \"labels\": ", "{{$.inputs.parameters[''labels'']}}", ", \"encryption_spec\":
{\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
"\"}", "}"]}'
- --project
- '{{$.inputs.parameters[''project'']}}'
- --location
- '{{$.inputs.parameters[''location'']}}'
- --gcp_resources
- '{{$.outputs.parameters[''gcp_resources''].output_file}}'
- --executor_input
- '{{$}}'
command:
- python3
- -u
- -m
- launcher
image: gcr.io/ml-pipeline/automl-tables-private:1.0.13
exec-model-batch-predict:
container:
args:
- --type
- BatchPredictionJob
- --payload
- '{"Concat": ["{", "\"display_name\": \"", "{{$.inputs.parameters[''job_display_name'']}}",
"\", ", " \"input_config\": {", "\"instances_format\": \"", "{{$.inputs.parameters[''instances_format'']}}",
"\"", ", \"gcs_source\": {", "\"uris\":", "{{$.inputs.parameters[''gcs_source_uris'']}}",
"}", ", \"bigquery_source\": {", "\"input_uri\": \"", "{{$.inputs.parameters[''bigquery_source_input_uri'']}}",
"\"", "}", "}", ", \"model_parameters\": ", "{{$.inputs.parameters[''model_parameters'']}}",
", \"output_config\": {", "\"predictions_format\": \"", "{{$.inputs.parameters[''predictions_format'']}}",
"\"", ", \"gcs_destination\": {", "\"output_uri_prefix\": \"", "{{$.inputs.parameters[''gcs_destination_output_uri_prefix'']}}",
"\"", "}", ", \"bigquery_destination\": {", "\"output_uri\": \"", "{{$.inputs.parameters[''bigquery_destination_output_uri'']}}",
"\"", "}", "}", ", \"dedicated_resources\": {", "\"machine_spec\": {", "\"machine_type\":
\"", "{{$.inputs.parameters[''machine_type'']}}", "\"", ", \"accelerator_type\":
\"", "{{$.inputs.parameters[''accelerator_type'']}}", "\"", ", \"accelerator_count\":
", "{{$.inputs.parameters[''accelerator_count'']}}", "}", ", \"starting_replica_count\":
", "{{$.inputs.parameters[''starting_replica_count'']}}", ", \"max_replica_count\":
", "{{$.inputs.parameters[''max_replica_count'']}}", "}", ", \"manual_batch_tuning_parameters\":
{", "\"batch_size\": ", "{{$.inputs.parameters[''manual_batch_tuning_parameters_batch_size'']}}",
"}", ", \"generate_explanation\": ", "{{$.inputs.parameters[''generate_explanation'']}}",
", \"explanation_spec\": {", "\"parameters\": ", "{{$.inputs.parameters[''explanation_parameters'']}}",
", \"metadata\": ", "{{$.inputs.parameters[''explanation_metadata'']}}",
"}", ", \"labels\": ", "{{$.inputs.parameters[''labels'']}}", ", \"encryption_spec\":
{\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
"\"}", "}"]}'
- --project
- '{{$.inputs.parameters[''project'']}}'
- --location
- '{{$.inputs.parameters[''location'']}}'
- --gcp_resources
- '{{$.outputs.parameters[''gcp_resources''].output_file}}'
- --executor_input
- '{{$}}'
command:
- python3
- -u
- -m
- google_cloud_pipeline_components.container.v1.batch_prediction_job.launcher
image: gcr.io/ml-pipeline/google-cloud-pipeline-components:1.0.32
exec-model-batch-predict-2:
container:
args:
- --type
- BatchPredictionJob
- --payload
- '{"Concat": ["{", "\"display_name\": \"", "{{$.inputs.parameters[''job_display_name'']}}",
"\", ", " \"input_config\": {", "\"instances_format\": \"", "{{$.inputs.parameters[''instances_format'']}}",
"\"", ", \"gcs_source\": {", "\"uris\":", "{{$.inputs.parameters[''gcs_source_uris'']}}",
"}", ", \"bigquery_source\": {", "\"input_uri\": \"", "{{$.inputs.parameters[''bigquery_source_input_uri'']}}",
"\"", "}", "}", ", \"model_parameters\": ", "{{$.inputs.parameters[''model_parameters'']}}",
", \"output_config\": {", "\"predictions_format\": \"", "{{$.inputs.parameters[''predictions_format'']}}",
"\"", ", \"gcs_destination\": {", "\"output_uri_prefix\": \"", "{{$.inputs.parameters[''gcs_destination_output_uri_prefix'']}}",
"\"", "}", ", \"bigquery_destination\": {", "\"output_uri\": \"", "{{$.inputs.parameters[''bigquery_destination_output_uri'']}}",
"\"", "}", "}", ", \"dedicated_resources\": {", "\"machine_spec\": {", "\"machine_type\":
\"", "{{$.inputs.parameters[''machine_type'']}}", "\"", ", \"accelerator_type\":
\"", "{{$.inputs.parameters[''accelerator_type'']}}", "\"", ", \"accelerator_count\":
", "{{$.inputs.parameters[''accelerator_count'']}}", "}", ", \"starting_replica_count\":
", "{{$.inputs.parameters[''starting_replica_count'']}}", ", \"max_replica_count\":
", "{{$.inputs.parameters[''max_replica_count'']}}", "}", ", \"manual_batch_tuning_parameters\":
{", "\"batch_size\": ", "{{$.inputs.parameters[''manual_batch_tuning_parameters_batch_size'']}}",
"}", ", \"generate_explanation\": ", "{{$.inputs.parameters[''generate_explanation'']}}",
", \"explanation_spec\": {", "\"parameters\": ", "{{$.inputs.parameters[''explanation_parameters'']}}",
", \"metadata\": ", "{{$.inputs.parameters[''explanation_metadata'']}}",
"}", ", \"labels\": ", "{{$.inputs.parameters[''labels'']}}", ", \"encryption_spec\":
{\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
"\"}", "}"]}'
- --project
- '{{$.inputs.parameters[''project'']}}'
- --location
- '{{$.inputs.parameters[''location'']}}'
- --gcp_resources
- '{{$.outputs.parameters[''gcp_resources''].output_file}}'
- --executor_input
- '{{$}}'
command:
- python3
- -u
- -m
- google_cloud_pipeline_components.container.v1.batch_prediction_job.launcher
image: gcr.io/ml-pipeline/google-cloud-pipeline-components:1.0.32
exec-model-batch-predict-3:
container:
args:
- --type
- BatchPredictionJob
- --payload
- '{"Concat": ["{", "\"display_name\": \"", "{{$.inputs.parameters[''job_display_name'']}}",
"\", ", " \"input_config\": {", "\"instances_format\": \"", "{{$.inputs.parameters[''instances_format'']}}",
"\"", ", \"gcs_source\": {", "\"uris\":", "{{$.inputs.parameters[''gcs_source_uris'']}}",
"}", ", \"bigquery_source\": {", "\"input_uri\": \"", "{{$.inputs.parameters[''bigquery_source_input_uri'']}}",
"\"", "}", "}", ", \"model_parameters\": ", "{{$.inputs.parameters[''model_parameters'']}}",
", \"output_config\": {", "\"predictions_format\": \"", "{{$.inputs.parameters[''predictions_format'']}}",
"\"", ", \"gcs_destination\": {", "\"output_uri_prefix\": \"", "{{$.inputs.parameters[''gcs_destination_output_uri_prefix'']}}",
"\"", "}", ", \"bigquery_destination\": {", "\"output_uri\": \"", "{{$.inputs.parameters[''bigquery_destination_output_uri'']}}",
"\"", "}", "}", ", \"dedicated_resources\": {", "\"machine_spec\": {", "\"machine_type\":
\"", "{{$.inputs.parameters[''machine_type'']}}", "\"", ", \"accelerator_type\":
\"", "{{$.inputs.parameters[''accelerator_type'']}}", "\"", ", \"accelerator_count\":
", "{{$.inputs.parameters[''accelerator_count'']}}", "}", ", \"starting_replica_count\":
", "{{$.inputs.parameters[''starting_replica_count'']}}", ", \"max_replica_count\":
", "{{$.inputs.parameters[''max_replica_count'']}}", "}", ", \"manual_batch_tuning_parameters\":
{", "\"batch_size\": ", "{{$.inputs.parameters[''manual_batch_tuning_parameters_batch_size'']}}",
"}", ", \"generate_explanation\": ", "{{$.inputs.parameters[''generate_explanation'']}}",
", \"explanation_spec\": {", "\"parameters\": ", "{{$.inputs.parameters[''explanation_parameters'']}}",
", \"metadata\": ", "{{$.inputs.parameters[''explanation_metadata'']}}",
"}", ", \"labels\": ", "{{$.inputs.parameters[''labels'']}}", ", \"encryption_spec\":
{\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
"\"}", "}"]}'
- --project
- '{{$.inputs.parameters[''project'']}}'
- --location
- '{{$.inputs.parameters[''location'']}}'
- --gcp_resources
- '{{$.outputs.parameters[''gcp_resources''].output_file}}'
- --executor_input
- '{{$}}'
command:
- python3
- -u
- -m
- google_cloud_pipeline_components.container.v1.batch_prediction_job.launcher
image: gcr.io/ml-pipeline/google-cloud-pipeline-components:1.0.32
exec-model-batch-predict-4:
container:
args:
- --type
- BatchPredictionJob
- --payload
- '{"Concat": ["{", "\"display_name\": \"", "{{$.inputs.parameters[''job_display_name'']}}",
"\", ", " \"input_config\": {", "\"instances_format\": \"", "{{$.inputs.parameters[''instances_format'']}}",
"\"", ", \"gcs_source\": {", "\"uris\":", "{{$.inputs.parameters[''gcs_source_uris'']}}",
"}", ", \"bigquery_source\": {", "\"input_uri\": \"", "{{$.inputs.parameters[''bigquery_source_input_uri'']}}",
"\"", "}", "}", ", \"model_parameters\": ", "{{$.inputs.parameters[''model_parameters'']}}",
", \"output_config\": {", "\"predictions_format\": \"", "{{$.inputs.parameters[''predictions_format'']}}",
"\"", ", \"gcs_destination\": {", "\"output_uri_prefix\": \"", "{{$.inputs.parameters[''gcs_destination_output_uri_prefix'']}}",
"\"", "}", ", \"bigquery_destination\": {", "\"output_uri\": \"", "{{$.inputs.parameters[''bigquery_destination_output_uri'']}}",
"\"", "}", "}", ", \"dedicated_resources\": {", "\"machine_spec\": {", "\"machine_type\":
\"", "{{$.inputs.parameters[''machine_type'']}}", "\"", ", \"accelerator_type\":
\"", "{{$.inputs.parameters[''accelerator_type'']}}", "\"", ", \"accelerator_count\":
", "{{$.inputs.parameters[''accelerator_count'']}}", "}", ", \"starting_replica_count\":
", "{{$.inputs.parameters[''starting_replica_count'']}}", ", \"max_replica_count\":
", "{{$.inputs.parameters[''max_replica_count'']}}", "}", ", \"manual_batch_tuning_parameters\":
{", "\"batch_size\": ", "{{$.inputs.parameters[''manual_batch_tuning_parameters_batch_size'']}}",
"}", ", \"generate_explanation\": ", "{{$.inputs.parameters[''generate_explanation'']}}",
", \"explanation_spec\": {", "\"parameters\": ", "{{$.inputs.parameters[''explanation_parameters'']}}",
", \"metadata\": ", "{{$.inputs.parameters[''explanation_metadata'']}}",
"}", ", \"labels\": ", "{{$.inputs.parameters[''labels'']}}", ", \"encryption_spec\":
{\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
"\"}", "}"]}'
- --project
- '{{$.inputs.parameters[''project'']}}'
- --location
- '{{$.inputs.parameters[''location'']}}'
- --gcp_resources
- '{{$.outputs.parameters[''gcp_resources''].output_file}}'
- --executor_input
- '{{$}}'
command:
- python3
- -u
- -m
- google_cloud_pipeline_components.container.v1.batch_prediction_job.launcher
image: gcr.io/ml-pipeline/google-cloud-pipeline-components:1.0.32
exec-model-batch-predict-5:
container:
args:
- --type
- BatchPredictionJob
- --payload
- '{"Concat": ["{", "\"display_name\": \"", "{{$.inputs.parameters[''job_display_name'']}}",
"\", ", " \"input_config\": {", "\"instances_format\": \"", "{{$.inputs.parameters[''instances_format'']}}",
"\"", ", \"gcs_source\": {", "\"uris\":", "{{$.inputs.parameters[''gcs_source_uris'']}}",
"}", ", \"bigquery_source\": {", "\"input_uri\": \"", "{{$.inputs.parameters[''bigquery_source_input_uri'']}}",
"\"", "}", "}", ", \"model_parameters\": ", "{{$.inputs.parameters[''model_parameters'']}}",
", \"output_config\": {", "\"predictions_format\": \"", "{{$.inputs.parameters[''predictions_format'']}}",
"\"", ", \"gcs_destination\": {", "\"output_uri_prefix\": \"", "{{$.inputs.parameters[''gcs_destination_output_uri_prefix'']}}",
"\"", "}", ", \"bigquery_destination\": {", "\"output_uri\": \"", "{{$.inputs.parameters[''bigquery_destination_output_uri'']}}",
"\"", "}", "}", ", \"dedicated_resources\": {", "\"machine_spec\": {", "\"machine_type\":
\"", "{{$.inputs.parameters[''machine_type'']}}", "\"", ", \"accelerator_type\":
\"", "{{$.inputs.parameters[''accelerator_type'']}}", "\"", ", \"accelerator_count\":
", "{{$.inputs.parameters[''accelerator_count'']}}", "}", ", \"starting_replica_count\":
", "{{$.inputs.parameters[''starting_replica_count'']}}", ", \"max_replica_count\":
", "{{$.inputs.parameters[''max_replica_count'']}}", "}", ", \"manual_batch_tuning_parameters\":
{", "\"batch_size\": ", "{{$.inputs.parameters[''manual_batch_tuning_parameters_batch_size'']}}",
"}", ", \"generate_explanation\": ", "{{$.inputs.parameters[''generate_explanation'']}}",
", \"explanation_spec\": {", "\"parameters\": ", "{{$.inputs.parameters[''explanation_parameters'']}}",
", \"metadata\": ", "{{$.inputs.parameters[''explanation_metadata'']}}",
"}", ", \"labels\": ", "{{$.inputs.parameters[''labels'']}}", ", \"encryption_spec\":
{\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
"\"}", "}"]}'
- --project
- '{{$.inputs.parameters[''project'']}}'
- --location
- '{{$.inputs.parameters[''location'']}}'
- --gcp_resources
- '{{$.outputs.parameters[''gcp_resources''].output_file}}'
- --executor_input
- '{{$}}'
command:
- python3
- -u
- -m
- google_cloud_pipeline_components.container.v1.batch_prediction_job.launcher
image: gcr.io/ml-pipeline/google-cloud-pipeline-components:1.0.32
exec-model-evaluation:
container:
args:
- --setup_file
- /setup.py
- --json_mode
- 'true'
- --project_id
- '{{$.inputs.parameters[''project'']}}'
- --location
- '{{$.inputs.parameters[''location'']}}'
- --problem_type
- '{{$.inputs.parameters[''problem_type'']}}'
- --batch_prediction_format
- '{{$.inputs.parameters[''predictions_format'']}}'
- --batch_prediction_gcs_source
- '{{$.inputs.artifacts[''batch_prediction_job''].metadata[''gcsOutputDirectory'']}}'
- --ground_truth_format
- '{{$.inputs.parameters[''ground_truth_format'']}}'
- --key_prefix_in_prediction_dataset
- instance
- --root_dir
- '{{$.inputs.parameters[''root_dir'']}}/{{$.pipeline_job_uuid}}-{{$.pipeline_task_uuid}}'
- --classification_type
- multiclass
- --ground_truth_column
- instance.{{$.inputs.parameters['ground_truth_column']}}
- --prediction_score_column
- '{{$.inputs.parameters[''prediction_score_column'']}}'
- --prediction_label_column
- '{{$.inputs.parameters[''prediction_label_column'']}}'
- --prediction_id_column
- ''
- --example_weight_column
- ''
- --generate_feature_attribution
- 'false'
- --dataflow_job_prefix
- evaluation-{{$.pipeline_job_uuid}}-{{$.pipeline_task_uuid}}
- --dataflow_service_account
- '{{$.inputs.parameters[''dataflow_service_account'']}}'
- --dataflow_disk_size
- '{{$.inputs.parameters[''dataflow_disk_size'']}}'
- --dataflow_machine_type
- '{{$.inputs.parameters[''dataflow_machine_type'']}}'
- --dataflow_workers_num
- '{{$.inputs.parameters[''dataflow_workers_num'']}}'
- --dataflow_max_workers_num
- '{{$.inputs.parameters[''dataflow_max_workers_num'']}}'
- --dataflow_subnetwork
- '{{$.inputs.parameters[''dataflow_subnetwork'']}}'
- --dataflow_use_public_ips
- '{{$.inputs.parameters[''dataflow_use_public_ips'']}}'
- --kms_key_name
- '{{$.inputs.parameters[''encryption_spec_key_name'']}}'
- --output_metrics_gcs_path
- '{{$.outputs.artifacts[''evaluation_metrics''].uri}}'
- --gcp_resources
- '{{$.outputs.parameters[''gcp_resources''].output_file}}'
- --executor_input
- '{{$}}'
command:
- python
- /main.py
image: gcr.io/ml-pipeline/model-evaluation:v0.4
exec-model-evaluation-2:
container:
args:
- --setup_file
- /setup.py
- --json_mode
- 'true'
- --project_id
- '{{$.inputs.parameters[''project'']}}'
- --location
- '{{$.inputs.parameters[''location'']}}'
- --problem_type
- '{{$.inputs.parameters[''problem_type'']}}'
- --batch_prediction_format
- '{{$.inputs.parameters[''predictions_format'']}}'
- --batch_prediction_gcs_source
- '{{$.inputs.artifacts[''batch_prediction_job''].metadata[''gcsOutputDirectory'']}}'
- --ground_truth_format
- '{{$.inputs.parameters[''ground_truth_format'']}}'
- --key_prefix_in_prediction_dataset
- instance
- --root_dir
- '{{$.inputs.parameters[''root_dir'']}}/{{$.pipeline_job_uuid}}-{{$.pipeline_task_uuid}}'
- --classification_type
- multiclass
- --ground_truth_column
- instance.{{$.inputs.parameters['ground_truth_column']}}
- --prediction_score_column
- '{{$.inputs.parameters[''prediction_score_column'']}}'
- --prediction_label_column
- '{{$.inputs.parameters[''prediction_label_column'']}}'
- --prediction_id_column
- ''
- --example_weight_column
- ''
- --generate_feature_attribution
- 'false'
- --dataflow_job_prefix
- evaluation-{{$.pipeline_job_uuid}}-{{$.pipeline_task_uuid}}
- --dataflow_service_account
- '{{$.inputs.parameters[''dataflow_service_account'']}}'
- --dataflow_disk_size
- '{{$.inputs.parameters[''dataflow_disk_size'']}}'
- --dataflow_machine_type
- '{{$.inputs.parameters[''dataflow_machine_type'']}}'
- --dataflow_workers_num
- '{{$.inputs.parameters[''dataflow_workers_num'']}}'
- --dataflow_max_workers_num
- '{{$.inputs.parameters[''dataflow_max_workers_num'']}}'
- --dataflow_subnetwork
- '{{$.inputs.parameters[''dataflow_subnetwork'']}}'
- --dataflow_use_public_ips
- '{{$.inputs.parameters[''dataflow_use_public_ips'']}}'
- --kms_key_name
- '{{$.inputs.parameters[''encryption_spec_key_name'']}}'
- --output_metrics_gcs_path
- '{{$.outputs.artifacts[''evaluation_metrics''].uri}}'
- --gcp_resources
- '{{$.outputs.parameters[''gcp_resources''].output_file}}'
- --executor_input
- '{{$}}'
command:
- python
- /main.py
image: gcr.io/ml-pipeline/model-evaluation:v0.4
exec-model-evaluation-3:
container:
args:
- --setup_file
- /setup.py
- --json_mode
- 'true'
- --project_id
- '{{$.inputs.parameters[''project'']}}'
- --location
- '{{$.inputs.parameters[''location'']}}'
- --problem_type
- '{{$.inputs.parameters[''problem_type'']}}'
- --batch_prediction_format
- '{{$.inputs.parameters[''predictions_format'']}}'
- --batch_prediction_gcs_source
- '{{$.inputs.artifacts[''batch_prediction_job''].metadata[''gcsOutputDirectory'']}}'
- --ground_truth_format
- '{{$.inputs.parameters[''ground_truth_format'']}}'
- --key_prefix_in_prediction_dataset
- instance
- --root_dir
- '{{$.inputs.parameters[''root_dir'']}}/{{$.pipeline_job_uuid}}-{{$.pipeline_task_uuid}}'
- --classification_type
- multiclass
- --ground_truth_column
- instance.{{$.inputs.parameters['ground_truth_column']}}
- --prediction_score_column
- '{{$.inputs.parameters[''prediction_score_column'']}}'
- --prediction_label_column
- '{{$.inputs.parameters[''prediction_label_column'']}}'
- --prediction_id_column
- ''
- --example_weight_column
- ''
- --generate_feature_attribution
- 'false'
- --dataflow_job_prefix
- evaluation-{{$.pipeline_job_uuid}}-{{$.pipeline_task_uuid}}
- --dataflow_service_account
- '{{$.inputs.parameters[''dataflow_service_account'']}}'
- --dataflow_disk_size
- '{{$.inputs.parameters[''dataflow_disk_size'']}}'
- --dataflow_machine_type
- '{{$.inputs.parameters[''dataflow_machine_type'']}}'
- --dataflow_workers_num
- '{{$.inputs.parameters[''dataflow_workers_num'']}}'
- --dataflow_max_workers_num
- '{{$.inputs.parameters[''dataflow_max_workers_num'']}}'
- --dataflow_subnetwork
- '{{$.inputs.parameters[''dataflow_subnetwork'']}}'
- --dataflow_use_public_ips
- '{{$.inputs.parameters[''dataflow_use_public_ips'']}}'
- --kms_key_name
- '{{$.inputs.parameters[''encryption_spec_key_name'']}}'
- --output_metrics_gcs_path
- '{{$.outputs.artifacts[''evaluation_metrics''].uri}}'
- --gcp_resources
- '{{$.outputs.parameters[''gcp_resources''].output_file}}'
- --executor_input
- '{{$}}'
command:
- python
- /main.py
image: gcr.io/ml-pipeline/model-evaluation:v0.4
exec-model-evaluation-import:
container:
args:
- --metrics
- '{{$.inputs.artifacts[''metrics''].uri}}'
- --metrics_explanation
- '{{$.inputs.artifacts[''metrics''].metadata[''explanation_gcs_path'']}}'
- '{"IfPresent": {"InputName": "feature_attributions", "Then": {"Concat":
["--feature_attributions", "{{$.inputs.artifacts[''feature_attributions''].uri}}"]}}}'
- --problem_type
- '{{$.inputs.parameters[''problem_type'']}}'
- --display_name
- '{{$.inputs.parameters[''display_name'']}}'
- '{"IfPresent": {"InputName": "dataset_path", "Then": {"Concat": ["--dataset_path",
"{{$.inputs.parameters[''dataset_path'']}}"]}}}'
- '{"IfPresent": {"InputName": "dataset_paths", "Then": {"Concat": ["--dataset_paths",
"{{$.inputs.parameters[''dataset_paths'']}}"]}}}'
- --dataset_type
- '{{$.inputs.parameters[''dataset_type'']}}'
- --pipeline_job_id
- '{{$.pipeline_job_uuid}}'
- --pipeline_job_resource_name
- '{{$.pipeline_job_resource_name}}'
- --model_name
- '{{$.inputs.artifacts[''model''].metadata[''resourceName'']}}'
- --gcp_resources
- '{{$.outputs.parameters[''gcp_resources''].output_file}}'
command:
- python3
- -u
- -m
- google_cloud_pipeline_components.container.experimental.evaluation.import_model_evaluation
image: gcr.io/ml-pipeline/google-cloud-pipeline-components:1.0.32
exec-model-evaluation-import-2:
container:
args:
- --metrics
- '{{$.inputs.artifacts[''metrics''].uri}}'
- --metrics_explanation
- '{{$.inputs.artifacts[''metrics''].metadata[''explanation_gcs_path'']}}'
- '{"IfPresent": {"InputName": "feature_attributions", "Then": {"Concat":
["--feature_attributions", "{{$.inputs.artifacts[''feature_attributions''].uri}}"]}}}'
- --problem_type
- '{{$.inputs.parameters[''problem_type'']}}'
- --display_name
- '{{$.inputs.parameters[''display_name'']}}'
- '{"IfPresent": {"InputName": "dataset_path", "Then": {"Concat": ["--dataset_path",
"{{$.inputs.parameters[''dataset_path'']}}"]}}}'
- '{"IfPresent": {"InputName": "dataset_paths", "Then": {"Concat": ["--dataset_paths",
"{{$.inputs.parameters[''dataset_paths'']}}"]}}}'
- --dataset_type
- '{{$.inputs.parameters[''dataset_type'']}}'
- --pipeline_job_id
- '{{$.pipeline_job_uuid}}'
- --pipeline_job_resource_name
- '{{$.pipeline_job_resource_name}}'
- --model_name
- '{{$.inputs.artifacts[''model''].metadata[''resourceName'']}}'
- --gcp_resources
- '{{$.outputs.parameters[''gcp_resources''].output_file}}'
command:
- python3
- -u
- -m
- google_cloud_pipeline_components.container.experimental.evaluation.import_model_evaluation
image: gcr.io/ml-pipeline/google-cloud-pipeline-components:1.0.32
exec-model-evaluation-import-3:
container:
args:
- --metrics
- '{{$.inputs.artifacts[''metrics''].uri}}'
- --metrics_explanation
- '{{$.inputs.artifacts[''metrics''].metadata[''explanation_gcs_path'']}}'
- '{"IfPresent": {"InputName": "feature_attributions", "Then": {"Concat":
["--feature_attributions", "{{$.inputs.artifacts[''feature_attributions''].uri}}"]}}}'
- --problem_type
- '{{$.inputs.parameters[''problem_type'']}}'
- --display_name
- '{{$.inputs.parameters[''display_name'']}}'
- '{"IfPresent": {"InputName": "dataset_path", "Then": {"Concat": ["--dataset_path",
"{{$.inputs.parameters[''dataset_path'']}}"]}}}'
- '{"IfPresent": {"InputName": "dataset_paths", "Then": {"Concat": ["--dataset_paths",
"{{$.inputs.parameters[''dataset_paths'']}}"]}}}'
- --dataset_type
- '{{$.inputs.parameters[''dataset_type'']}}'
- --pipeline_job_id
- '{{$.pipeline_job_uuid}}'
- --pipeline_job_resource_name
- '{{$.pipeline_job_resource_name}}'
- --model_name
- '{{$.inputs.artifacts[''model''].metadata[''resourceName'']}}'
- --gcp_resources
- '{{$.outputs.parameters[''gcp_resources''].output_file}}'
command:
- python3
- -u
- -m
- google_cloud_pipeline_components.container.experimental.evaluation.import_model_evaluation
image: gcr.io/ml-pipeline/google-cloud-pipeline-components:1.0.32
exec-model-upload:
container:
args:
- --type
- UploadModel
- --payload
- '{"Concat": ["{", "\"display_name\": \"", "{{$.inputs.parameters[''display_name'']}}",
"\"", ", \"description\": \"", "{{$.inputs.parameters[''description'']}}",
"\"", ", \"explanation_spec\": {", "\"parameters\": ", "{{$.inputs.parameters[''explanation_parameters'']}}",
", \"metadata\": ", "{{$.inputs.parameters[''explanation_metadata'']}}",
"}", ", \"explanation_metadata_artifact\": \"", "{{$.inputs.artifacts[''explanation_metadata_artifact''].uri}}",
"\"", ", \"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
"\"}", ", \"labels\": ", "{{$.inputs.parameters[''labels'']}}", "}"]}'
- --project
- '{{$.inputs.parameters[''project'']}}'
- --location
- '{{$.inputs.parameters[''location'']}}'
- --gcp_resources
- '{{$.outputs.parameters[''gcp_resources''].output_file}}'
- --executor_input
- '{{$}}'
command:
- python3
- -u
- -m
- launcher
image: gcr.io/ml-pipeline/automl-tables-private:1.0.13
exec-model-upload-2:
container:
args:
- --type
- UploadModel
- --payload
- '{"Concat": ["{", "\"display_name\": \"", "{{$.inputs.parameters[''display_name'']}}",
"\"", ", \"description\": \"", "{{$.inputs.parameters[''description'']}}",
"\"", ", \"explanation_spec\": {", "\"parameters\": ", "{{$.inputs.parameters[''explanation_parameters'']}}",
", \"metadata\": ", "{{$.inputs.parameters[''explanation_metadata'']}}",
"}", ", \"explanation_metadata_artifact\": \"", "{{$.inputs.artifacts[''explanation_metadata_artifact''].uri}}",
"\"", ", \"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
"\"}", ", \"labels\": ", "{{$.inputs.parameters[''labels'']}}", "}"]}'
- --project
- '{{$.inputs.parameters[''project'']}}'
- --location
- '{{$.inputs.parameters[''location'']}}'
- --gcp_resources
- '{{$.outputs.parameters[''gcp_resources''].output_file}}'
- --executor_input
- '{{$}}'
command:
- python3
- -u
- -m
- launcher
image: gcr.io/ml-pipeline/automl-tables-private:1.0.13
exec-model-upload-3:
container:
args:
- --type
- UploadModel
- --payload
- '{"Concat": ["{", "\"display_name\": \"", "{{$.inputs.parameters[''display_name'']}}",
"\"", ", \"description\": \"", "{{$.inputs.parameters[''description'']}}",
"\"", ", \"explanation_spec\": {", "\"parameters\": ", "{{$.inputs.parameters[''explanation_parameters'']}}",
", \"metadata\": ", "{{$.inputs.parameters[''explanation_metadata'']}}",
"}", ", \"explanation_metadata_artifact\": \"", "{{$.inputs.artifacts[''explanation_metadata_artifact''].uri}}",
"\"", ", \"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
"\"}", ", \"labels\": ", "{{$.inputs.parameters[''labels'']}}", "}"]}'
- --project
- '{{$.inputs.parameters[''project'']}}'
- --location
- '{{$.inputs.parameters[''location'']}}'
- --gcp_resources
- '{{$.outputs.parameters[''gcp_resources''].output_file}}'
- --executor_input
- '{{$}}'
command:
- python3
- -u
- -m
- launcher
image: gcr.io/ml-pipeline/automl-tables-private:1.0.13
exec-read-input-uri:
container:
args:
- --executor_input
- '{{$}}'
- --function_to_execute
- _read_input_uri
command:
- sh
- -ec
- 'program_path=$(mktemp -d)
printf "%s" "$0" > "$program_path/ephemeral_component.py"
python3 -m kfp.components.executor_main --component_module_path "$program_path/ephemeral_component.py" "$@"
'
- "\nimport kfp\nfrom kfp import dsl\nfrom kfp.dsl import *\nfrom typing import\
\ *\n\ndef _read_input_uri(split_uri: dsl.InputPath('Dataset')) -> list:\
\ # Required by KFP; pylint:disable=g-bare-generic\n \"\"\"Construct Dataset\
\ based on the batch prediction job.\n\n Args:\n split_uri: Tbe path\
\ to the file that contains Dataset data.\n\n Returns:\n The list of\
\ string that represents the batch prediction input files.\n \"\"\"\n \
\ # pylint: disable=g-import-not-at-top,import-outside-toplevel,redefined-outer-name,reimported\n\
\ import json\n # pylint: enable=g-import-not-at-top,import-outside-toplevel,redefined-outer-name,reimported\n\
\ with open(split_uri, 'r') as f:\n data_source = json.loads(f.read())\n\
\ return data_source['tf_record_data_source']['file_patterns']\n\n"
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:dev
exec-read-input-uri-2:
container:
args:
- --executor_input
- '{{$}}'
- --function_to_execute
- _read_input_uri
command:
- sh
- -ec
- 'program_path=$(mktemp -d)
printf "%s" "$0" > "$program_path/ephemeral_component.py"
python3 -m kfp.components.executor_main --component_module_path "$program_path/ephemeral_component.py" "$@"
'
- "\nimport kfp\nfrom kfp import dsl\nfrom kfp.dsl import *\nfrom typing import\
\ *\n\ndef _read_input_uri(split_uri: dsl.InputPath('Dataset')) -> list:\
\ # Required by KFP; pylint:disable=g-bare-generic\n \"\"\"Construct Dataset\
\ based on the batch prediction job.\n\n Args:\n split_uri: Tbe path\
\ to the file that contains Dataset data.\n\n Returns:\n The list of\
\ string that represents the batch prediction input files.\n \"\"\"\n \
\ # pylint: disable=g-import-not-at-top,import-outside-toplevel,redefined-outer-name,reimported\n\
\ import json\n # pylint: enable=g-import-not-at-top,import-outside-toplevel,redefined-outer-name,reimported\n\
\ with open(split_uri, 'r') as f:\n data_source = json.loads(f.read())\n\
\ return data_source['tf_record_data_source']['file_patterns']\n\n"
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:dev
exec-set-optional-inputs:
container:
args:
- --executor_input
- '{{$}}'
- --function_to_execute
- _set_optional_inputs
command:
- sh
- -ec
- 'program_path=$(mktemp -d)
printf "%s" "$0" > "$program_path/ephemeral_component.py"
python3 -m kfp.components.executor_main --component_module_path "$program_path/ephemeral_component.py" "$@"
'
- "\nimport kfp\nfrom kfp import dsl\nfrom kfp.dsl import *\nfrom typing import\
\ *\n\ndef _set_optional_inputs(\n project: str,\n location: str,\n\
\ data_source_csv_filenames: str,\n data_source_bigquery_table_path:\
\ str,\n vertex_dataset: Input[dsl.Artifact],\n model_display_name:\
\ str,\n) -> NamedTuple('Outputs', [\n ('data_source_csv_filenames',\
\ str),\n ('data_source_bigquery_table_path', str),\n ('model_display_name',\
\ str),\n]):\n \"\"\"Get the data source URI.\n\n Args:\n project:\
\ The GCP project that runs the pipeline components.\n location: The\
\ GCP region that runs the pipeline components.\n data_source_csv_filenames:\
\ The CSV GCS path when data source is CSV.\n data_source_bigquery_table_path:\
\ The BigQuery table when data source is BQ.\n vertex_dataset: The Vertex\
\ dataset when data source is Vertex dataset.\n model_display_name: The\
\ uploaded model's display name.\n\n Returns:\n A named tuple of CSV\
\ or BQ URI.\n \"\"\"\n # pylint: disable=g-import-not-at-top,import-outside-toplevel,redefined-outer-name\n\
\ import collections\n from google.cloud import aiplatform\n from google.cloud\
\ import aiplatform_v1beta1 as aip\n import uuid\n # pylint: enable=g-import-not-at-top,import-outside-toplevel,redefined-outer-name\n\
\n if not model_display_name:\n model_display_name = f'tabular-workflow-model-{uuid.uuid4()}'\n\
\n if vertex_dataset is not None:\n # of format\n # projects/294348452381/locations/us-central1/datasets/7104764862735056896\n\
\ dataset_name = vertex_dataset.metadata['resourceName']\n\n aiplatform.init(project=project,\
\ location=location)\n client = aip.DatasetServiceClient(client_options={\n\
\ 'api_endpoint': f'{location}-aiplatform.googleapis.com'\n })\n\
\ dataset = client.get_dataset(name=dataset_name)\n input_config =\
\ dataset.metadata['inputConfig']\n print(input_config)\n if 'gcsSource'\
\ in input_config:\n data_source_csv_filenames = ','.join(input_config['gcsSource']['uri'])\n\
\ elif 'bigquerySource' in input_config:\n data_source_bigquery_table_path\
\ = input_config['bigquerySource']['uri']\n elif data_source_csv_filenames:\n\
\ pass\n elif data_source_bigquery_table_path:\n pass\n else:\n\
\ raise ValueError(\n 'One of vertex_dataset, data_source_csv_filenames,'\n\
\ ' data_source_bigquery_table_path must be specified'\n )\n\n\
\ return collections.namedtuple(\n 'Outputs',\n [\n \
\ 'data_source_csv_filenames',\n 'data_source_bigquery_table_path',\n\
\ 'model_display_name',\n ],\n )(\n data_source_csv_filenames,\n\
\ data_source_bigquery_table_path,\n model_display_name,\n )\n\
\n"
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:dev
exec-string-not-empty:
container:
args:
- --executor_input
- '{{$}}'
- --function_to_execute
- _string_not_empty
command:
- sh
- -ec
- 'program_path=$(mktemp -d)
printf "%s" "$0" > "$program_path/ephemeral_component.py"
python3 -m kfp.components.executor_main --component_module_path "$program_path/ephemeral_component.py" "$@"
'
- "\nimport kfp\nfrom kfp import dsl\nfrom kfp.dsl import *\nfrom typing import\
\ *\n\ndef _string_not_empty(value: str) -> str:\n \"\"\"Check if the input\
\ string value is not empty.\n\n Args:\n value: String value to be checked.\n\
\n Returns:\n Boolean value. -> 'true' if empty, 'false' if not empty.\
\ We need to use str\n instead of bool due to a limitation in KFP compiler.\n\
\ \"\"\"\n return 'true' if value else 'false'\n\n"
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:dev
exec-tabular-stats-and-example-gen:
container:
args:
- --type
- CustomJob
- --project
- '{{$.inputs.parameters[''project'']}}'
- --location
- '{{$.inputs.parameters[''location'']}}'
- --gcp_resources
- '{{$.outputs.parameters[''gcp_resources''].output_file}}'
- --payload
- '{"Concat": ["{\"display_name\": \"tabular-stats-and-example-gen-{{$.pipeline_job_uuid}}-{{$.pipeline_task_uuid}}\",
\"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
"\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
{\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:dev", "\",
\"args\": [\"stats_generator\",", "\"--train_spec={\\\"prediction_type\\\":
\\\"", "{{$.inputs.parameters[''prediction_type'']}}", "\\\", \\\"target_column\\\":
\\\"", "{{$.inputs.parameters[''target_column_name'']}}", "\\\", \\\"optimization_objective\\\":
\\\"", "{{$.inputs.parameters[''optimization_objective'']}}", "\\\", \\\"weight_column_name\\\":
\\\"", "{{$.inputs.parameters[''weight_column_name'']}}", "\\\", \\\"transformations\\\":
", "{{$.inputs.parameters[''transformations'']}}", ", \\\"quantiles\\\":
", "{{$.inputs.parameters[''quantiles'']}}", ", \\\"enable_probabilistic_inference\\\":
", "{{$.inputs.parameters[''enable_probabilistic_inference'']}}", "}\",
\"--transformations_override_path=", "{{$.inputs.parameters[''transformations_path'']}}",
"\", \"--data_source_csv_filenames=", "{{$.inputs.parameters[''data_source_csv_filenames'']}}",
"\", \"--data_source_bigquery_table_path=", "{{$.inputs.parameters[''data_source_bigquery_table_path'']}}",
"\", \"--predefined_split_key=", "{{$.inputs.parameters[''predefined_split_key'']}}",
"\", \"--timestamp_split_key=", "{{$.inputs.parameters[''timestamp_split_key'']}}",
"\", \"--stratified_split_key=", "{{$.inputs.parameters[''stratified_split_key'']}}",
"\", \"--training_fraction=", "{{$.inputs.parameters[''training_fraction'']}}",
"\", \"--validation_fraction=", "{{$.inputs.parameters[''validation_fraction'']}}",
"\", \"--test_fraction=", "{{$.inputs.parameters[''test_fraction'']}}",
"\", \"--target_column=", "{{$.inputs.parameters[''target_column_name'']}}",
"\", \"--request_type=", "{{$.inputs.parameters[''request_type'']}}", "\",
\"--optimization_objective_recall_value=", "{{$.inputs.parameters[''optimization_objective_recall_value'']}}",
"\", \"--optimization_objective_precision_value=", "{{$.inputs.parameters[''optimization_objective_precision_value'']}}",
"\", \"--example_gen_gcs_output_prefix=", "{{$.inputs.parameters[''root_dir'']}}",
"/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/example_gen_output\",
\"--dataset_stats_dir=", "{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/stats/\",
\"--stats_result_path=", "{{$.outputs.artifacts[''dataset_stats''].uri}}",
"\", \"--dataset_schema_path=", "{{$.outputs.artifacts[''dataset_schema''].uri}}",
"\", \"--job_name=tabular-stats-and-example-gen-{{$.pipeline_job_uuid}}-{{$.pipeline_task_uuid}}",
"\", \"--dataflow_project=", "{{$.inputs.parameters[''project'']}}", "\",
\"--error_file_path=", "{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/error.pb\",
\"--dataflow_staging_dir=", "{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/dataflow_staging\",
\"--dataflow_tmp_dir=", "{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/dataflow_tmp\",
\"--dataflow_max_num_workers=", "{{$.inputs.parameters[''dataflow_max_num_workers'']}}",
"\", \"--dataflow_worker_container_image=", "us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:dev",
"\", \"--dataflow_machine_type=", "{{$.inputs.parameters[''dataflow_machine_type'']}}",
"\", \"--dataflow_disk_size_gb=", "{{$.inputs.parameters[''dataflow_disk_size_gb'']}}",
"\", \"--dataflow_kms_key=", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
"\", \"--dataflow_subnetwork_fully_qualified=", "{{$.inputs.parameters[''dataflow_subnetwork'']}}",
"\", \"--dataflow_use_public_ips=", "{{$.inputs.parameters[''dataflow_use_public_ips'']}}",
"\", \"--dataflow_service_account=", "{{$.inputs.parameters[''dataflow_service_account'']}}",
"\", \"--is_distill=", "{{$.inputs.parameters[''run_distillation'']}}",
"\", \"--additional_experiments=", "{{$.inputs.parameters[''additional_experiments'']}}",
"\", \"--metadata_path=", "{{$.outputs.artifacts[''metadata''].uri}}", "\",
\"--train_split=", "{{$.outputs.artifacts[''train_split''].uri}}", "\",
\"--eval_split=", "{{$.outputs.artifacts[''eval_split''].uri}}", "\", \"--test_split=",
"{{$.outputs.artifacts[''test_split''].uri}}", "\", \"--test_split_for_batch_prediction_component=",
"{{$.outputs.parameters[''test_split_json''].output_file}}", "\", \"--downsampled_test_split_for_batch_prediction_component=",
"{{$.outputs.parameters[''downsampled_test_split_json''].output_file}}",
"\", \"--instance_baseline_path=", "{{$.outputs.artifacts[''instance_baseline''].uri}}",
"\", \"--lro_job_info=", "{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/lro\",
\"--gcp_resources_path=", "{{$.outputs.parameters[''gcp_resources''].output_file}}",
"\", \"--parse_json=true\", \"--generate_additional_downsample_test_split=true\",
\"--executor_input={{$.json_escape[1]}}\"]}}]}}"]}'
command:
- python3
- -u
- -m
- google_cloud_pipeline_components.container.v1.custom_job.launcher
image: gcr.io/ml-pipeline/google-cloud-pipeline-components:1.0.32
exec-write-bp-result-path:
container:
args:
- --executor_input
- '{{$}}'
- --function_to_execute
- _write_bp_result_path
command:
- sh
- -ec
- 'program_path=$(mktemp -d)
printf "%s" "$0" > "$program_path/ephemeral_component.py"
python3 -m kfp.components.executor_main --component_module_path "$program_path/ephemeral_component.py" "$@"
'
- "\nimport kfp\nfrom kfp import dsl\nfrom kfp.dsl import *\nfrom typing import\
\ *\n\ndef _write_bp_result_path(\n bp_job: Input[Artifact],\n result:\
\ OutputPath('Dataset'),\n):\n \"\"\"Construct Dataset based on the batch\
\ prediction job.\n\n Args:\n bp_job: The batch prediction job artifact.\n\
\ result: Tbe path to the file that contains Dataset data.\n \"\"\"\n\
\ # pylint: disable=g-import-not-at-top,import-outside-toplevel,redefined-outer-name,reimported\n\
\ import json\n # pylint: enable=g-import-not-at-top,import-outside-toplevel,redefined-outer-name,reimported\n\
\ directory = bp_job.metadata['gcsOutputDirectory']\n data_source = {\n\
\ 'tf_record_data_source': {\n 'file_patterns': [f'{directory}/prediction.results-*',],\n\
\ 'coder': 'PROTO_VALUE',\n },\n }\n with open(result, 'w')\
\ as f:\n f.write(json.dumps(data_source))\n\n"
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:dev
exec-write-bp-result-path-2:
container:
args:
- --executor_input
- '{{$}}'
- --function_to_execute
- _write_bp_result_path
command:
- sh
- -ec
- 'program_path=$(mktemp -d)
printf "%s" "$0" > "$program_path/ephemeral_component.py"
python3 -m kfp.components.executor_main --component_module_path "$program_path/ephemeral_component.py" "$@"
'
- "\nimport kfp\nfrom kfp import dsl\nfrom kfp.dsl import *\nfrom typing import\
\ *\n\ndef _write_bp_result_path(\n bp_job: Input[Artifact],\n result:\
\ OutputPath('Dataset'),\n):\n \"\"\"Construct Dataset based on the batch\
\ prediction job.\n\n Args:\n bp_job: The batch prediction job artifact.\n\
\ result: Tbe path to the file that contains Dataset data.\n \"\"\"\n\
\ # pylint: disable=g-import-not-at-top,import-outside-toplevel,redefined-outer-name,reimported\n\
\ import json\n # pylint: enable=g-import-not-at-top,import-outside-toplevel,redefined-outer-name,reimported\n\
\ directory = bp_job.metadata['gcsOutputDirectory']\n data_source = {\n\
\ 'tf_record_data_source': {\n 'file_patterns': [f'{directory}/prediction.results-*',],\n\
\ 'coder': 'PROTO_VALUE',\n },\n }\n with open(result, 'w')\
\ as f:\n f.write(json.dumps(data_source))\n\n"
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:dev
pipelineInfo:
name: automl-tabular
root:
dag:
outputs:
artifacts:
feature-attribution-2-feature_attributions:
artifactSelectors:
- outputArtifactKey: feature-attribution-2-feature_attributions
producerSubtask: exit-handler-1
feature-attribution-3-feature_attributions:
artifactSelectors:
- outputArtifactKey: feature-attribution-3-feature_attributions
producerSubtask: exit-handler-1
feature-attribution-feature_attributions:
artifactSelectors:
- outputArtifactKey: feature-attribution-feature_attributions
producerSubtask: exit-handler-1
model-evaluation-2-evaluation_metrics:
artifactSelectors:
- outputArtifactKey: model-evaluation-2-evaluation_metrics
producerSubtask: exit-handler-1
model-evaluation-3-evaluation_metrics:
artifactSelectors:
- outputArtifactKey: model-evaluation-3-evaluation_metrics
producerSubtask: exit-handler-1
model-evaluation-evaluation_metrics:
artifactSelectors:
- outputArtifactKey: model-evaluation-evaluation_metrics
producerSubtask: exit-handler-1
tasks:
automl-tabular-finalizer:
cachingOptions:
enableCache: true
componentRef:
name: comp-automl-tabular-finalizer
dependentTasks:
- exit-handler-1
inputs:
parameters:
location:
componentInputParameter: location
project:
componentInputParameter: project
root_dir:
componentInputParameter: root_dir
taskInfo:
name: automl-tabular-finalizer
triggerPolicy:
strategy: ALL_UPSTREAM_TASKS_COMPLETED
exit-handler-1:
componentRef:
name: comp-exit-handler-1
dependentTasks:
- set-optional-inputs
inputs:
parameters:
pipelinechannel--additional_experiments:
componentInputParameter: additional_experiments
pipelinechannel--cv_trainer_worker_pool_specs_override:
componentInputParameter: cv_trainer_worker_pool_specs_override
pipelinechannel--dataflow_service_account:
componentInputParameter: dataflow_service_account
pipelinechannel--dataflow_subnetwork:
componentInputParameter: dataflow_subnetwork
pipelinechannel--dataflow_use_public_ips:
componentInputParameter: dataflow_use_public_ips
pipelinechannel--disable_early_stopping:
componentInputParameter: disable_early_stopping
pipelinechannel--distill_batch_predict_machine_type:
componentInputParameter: distill_batch_predict_machine_type
pipelinechannel--distill_batch_predict_max_replica_count:
componentInputParameter: distill_batch_predict_max_replica_count
pipelinechannel--distill_batch_predict_starting_replica_count:
componentInputParameter: distill_batch_predict_starting_replica_count
pipelinechannel--enable_probabilistic_inference:
componentInputParameter: enable_probabilistic_inference
pipelinechannel--encryption_spec_key_name:
componentInputParameter: encryption_spec_key_name
pipelinechannel--evaluation_batch_explain_machine_type:
componentInputParameter: evaluation_batch_explain_machine_type
pipelinechannel--evaluation_batch_explain_max_replica_count:
componentInputParameter: evaluation_batch_explain_max_replica_count
pipelinechannel--evaluation_batch_explain_starting_replica_count:
componentInputParameter: evaluation_batch_explain_starting_replica_count
pipelinechannel--evaluation_batch_predict_machine_type:
componentInputParameter: evaluation_batch_predict_machine_type
pipelinechannel--evaluation_batch_predict_max_replica_count:
componentInputParameter: evaluation_batch_predict_max_replica_count
pipelinechannel--evaluation_batch_predict_starting_replica_count:
componentInputParameter: evaluation_batch_predict_starting_replica_count
pipelinechannel--evaluation_dataflow_disk_size_gb:
componentInputParameter: evaluation_dataflow_disk_size_gb
pipelinechannel--evaluation_dataflow_machine_type:
componentInputParameter: evaluation_dataflow_machine_type
pipelinechannel--evaluation_dataflow_max_num_workers:
componentInputParameter: evaluation_dataflow_max_num_workers
pipelinechannel--evaluation_dataflow_starting_num_workers:
componentInputParameter: evaluation_dataflow_starting_num_workers
pipelinechannel--export_additional_model_without_custom_ops:
componentInputParameter: export_additional_model_without_custom_ops
pipelinechannel--fast_testing:
componentInputParameter: fast_testing
pipelinechannel--location:
componentInputParameter: location
pipelinechannel--model_description:
componentInputParameter: model_description
pipelinechannel--optimization_objective:
componentInputParameter: optimization_objective
pipelinechannel--optimization_objective_precision_value:
componentInputParameter: optimization_objective_precision_value
pipelinechannel--optimization_objective_recall_value:
componentInputParameter: optimization_objective_recall_value
pipelinechannel--predefined_split_key:
componentInputParameter: predefined_split_key
pipelinechannel--prediction_type:
componentInputParameter: prediction_type
pipelinechannel--project:
componentInputParameter: project
pipelinechannel--quantiles:
componentInputParameter: quantiles
pipelinechannel--root_dir:
componentInputParameter: root_dir
pipelinechannel--run_distillation:
componentInputParameter: run_distillation
pipelinechannel--run_evaluation:
componentInputParameter: run_evaluation
pipelinechannel--set-optional-inputs-data_source_bigquery_table_path:
taskOutputParameter:
outputParameterKey: data_source_bigquery_table_path
producerTask: set-optional-inputs
pipelinechannel--set-optional-inputs-data_source_csv_filenames:
taskOutputParameter:
outputParameterKey: data_source_csv_filenames
producerTask: set-optional-inputs
pipelinechannel--set-optional-inputs-model_display_name:
taskOutputParameter:
outputParameterKey: model_display_name
producerTask: set-optional-inputs
pipelinechannel--stage_1_num_parallel_trials:
componentInputParameter: stage_1_num_parallel_trials
pipelinechannel--stage_1_tuner_worker_pool_specs_override:
componentInputParameter: stage_1_tuner_worker_pool_specs_override
pipelinechannel--stage_1_tuning_result_artifact_uri:
componentInputParameter: stage_1_tuning_result_artifact_uri
pipelinechannel--stage_2_num_parallel_trials:
componentInputParameter: stage_2_num_parallel_trials
pipelinechannel--stage_2_num_selected_trials:
componentInputParameter: stage_2_num_selected_trials
pipelinechannel--stats_and_example_gen_dataflow_disk_size_gb:
componentInputParameter: stats_and_example_gen_dataflow_disk_size_gb
pipelinechannel--stats_and_example_gen_dataflow_machine_type:
componentInputParameter: stats_and_example_gen_dataflow_machine_type
pipelinechannel--stats_and_example_gen_dataflow_max_num_workers:
componentInputParameter: stats_and_example_gen_dataflow_max_num_workers
pipelinechannel--stratified_split_key:
componentInputParameter: stratified_split_key
pipelinechannel--study_spec_parameters_override:
componentInputParameter: study_spec_parameters_override
pipelinechannel--target_column:
componentInputParameter: target_column
pipelinechannel--test_fraction:
componentInputParameter: test_fraction
pipelinechannel--timestamp_split_key:
componentInputParameter: timestamp_split_key
pipelinechannel--train_budget_milli_node_hours:
componentInputParameter: train_budget_milli_node_hours
pipelinechannel--training_fraction:
componentInputParameter: training_fraction
pipelinechannel--transform_dataflow_disk_size_gb:
componentInputParameter: transform_dataflow_disk_size_gb
pipelinechannel--transform_dataflow_machine_type:
componentInputParameter: transform_dataflow_machine_type
pipelinechannel--transform_dataflow_max_num_workers:
componentInputParameter: transform_dataflow_max_num_workers
pipelinechannel--transformations:
componentInputParameter: transformations
pipelinechannel--validation_fraction:
componentInputParameter: validation_fraction
pipelinechannel--weight_column:
componentInputParameter: weight_column
taskInfo:
name: exit-handler-1
set-optional-inputs:
cachingOptions:
enableCache: true
componentRef:
name: comp-set-optional-inputs
inputs:
artifacts:
vertex_dataset:
componentInputArtifact: vertex_dataset
parameters:
data_source_bigquery_table_path:
componentInputParameter: data_source_bigquery_table_path
data_source_csv_filenames:
componentInputParameter: data_source_csv_filenames
location:
componentInputParameter: location
model_display_name:
componentInputParameter: model_display_name
project:
componentInputParameter: project
taskInfo:
name: set-optional-inputs
inputDefinitions:
artifacts:
vertex_dataset:
artifactType:
schemaTitle: system.Artifact
schemaVersion: 0.0.1
parameters:
additional_experiments:
isOptional: true
parameterType: STRUCT
cv_trainer_worker_pool_specs_override:
isOptional: true
parameterType: LIST
data_source_bigquery_table_path:
defaultValue: ''
isOptional: true
parameterType: STRING
data_source_csv_filenames:
defaultValue: ''
isOptional: true
parameterType: STRING
dataflow_service_account:
defaultValue: ''
isOptional: true
parameterType: STRING
dataflow_subnetwork:
defaultValue: ''
isOptional: true
parameterType: STRING
dataflow_use_public_ips:
defaultValue: true
isOptional: true
parameterType: BOOLEAN
disable_early_stopping:
defaultValue: false
isOptional: true
parameterType: BOOLEAN
distill_batch_predict_machine_type:
defaultValue: n1-standard-16
isOptional: true
parameterType: STRING
distill_batch_predict_max_replica_count:
defaultValue: 25.0
isOptional: true
parameterType: NUMBER_INTEGER
distill_batch_predict_starting_replica_count:
defaultValue: 25.0
isOptional: true
parameterType: NUMBER_INTEGER
enable_probabilistic_inference:
defaultValue: false
isOptional: true
parameterType: BOOLEAN
encryption_spec_key_name:
defaultValue: ''
isOptional: true
parameterType: STRING
evaluation_batch_explain_machine_type:
defaultValue: n1-highmem-8
isOptional: true
parameterType: STRING
evaluation_batch_explain_max_replica_count:
defaultValue: 10.0
isOptional: true
parameterType: NUMBER_INTEGER
evaluation_batch_explain_starting_replica_count:
defaultValue: 10.0
isOptional: true
parameterType: NUMBER_INTEGER
evaluation_batch_predict_machine_type:
defaultValue: n1-highmem-8
isOptional: true
parameterType: STRING
evaluation_batch_predict_max_replica_count:
defaultValue: 20.0
isOptional: true
parameterType: NUMBER_INTEGER
evaluation_batch_predict_starting_replica_count:
defaultValue: 20.0
isOptional: true
parameterType: NUMBER_INTEGER
evaluation_dataflow_disk_size_gb:
defaultValue: 50.0
isOptional: true
parameterType: NUMBER_INTEGER
evaluation_dataflow_machine_type:
defaultValue: n1-standard-4
isOptional: true
parameterType: STRING
evaluation_dataflow_max_num_workers:
defaultValue: 100.0
isOptional: true
parameterType: NUMBER_INTEGER
evaluation_dataflow_starting_num_workers:
defaultValue: 10.0
isOptional: true
parameterType: NUMBER_INTEGER
export_additional_model_without_custom_ops:
defaultValue: false
isOptional: true
parameterType: BOOLEAN
fast_testing:
defaultValue: false
isOptional: true
parameterType: BOOLEAN
location:
parameterType: STRING
model_description:
defaultValue: ''
isOptional: true
parameterType: STRING
model_display_name:
defaultValue: ''
isOptional: true
parameterType: STRING
optimization_objective:
parameterType: STRING
optimization_objective_precision_value:
defaultValue: -1.0
isOptional: true
parameterType: NUMBER_DOUBLE
optimization_objective_recall_value:
defaultValue: -1.0
isOptional: true
parameterType: NUMBER_DOUBLE
predefined_split_key:
defaultValue: ''
isOptional: true
parameterType: STRING
prediction_type:
parameterType: STRING
project:
parameterType: STRING
quantiles:
isOptional: true
parameterType: LIST
root_dir:
parameterType: STRING
run_distillation:
defaultValue: false
isOptional: true
parameterType: BOOLEAN
run_evaluation:
defaultValue: false
isOptional: true
parameterType: BOOLEAN
stage_1_num_parallel_trials:
defaultValue: 35.0
isOptional: true
parameterType: NUMBER_INTEGER
stage_1_tuner_worker_pool_specs_override:
isOptional: true
parameterType: LIST
stage_1_tuning_result_artifact_uri:
defaultValue: ''
isOptional: true
parameterType: STRING
stage_2_num_parallel_trials:
defaultValue: 35.0
isOptional: true
parameterType: NUMBER_INTEGER
stage_2_num_selected_trials:
defaultValue: 5.0
isOptional: true
parameterType: NUMBER_INTEGER
stats_and_example_gen_dataflow_disk_size_gb:
defaultValue: 40.0
isOptional: true
parameterType: NUMBER_INTEGER
stats_and_example_gen_dataflow_machine_type:
defaultValue: n1-standard-16
isOptional: true
parameterType: STRING
stats_and_example_gen_dataflow_max_num_workers:
defaultValue: 25.0
isOptional: true
parameterType: NUMBER_INTEGER
stratified_split_key:
defaultValue: ''
isOptional: true
parameterType: STRING
study_spec_parameters_override:
isOptional: true
parameterType: LIST
target_column:
parameterType: STRING
test_fraction:
defaultValue: -1.0
isOptional: true
parameterType: NUMBER_DOUBLE
timestamp_split_key:
defaultValue: ''
isOptional: true
parameterType: STRING
train_budget_milli_node_hours:
parameterType: NUMBER_DOUBLE
training_fraction:
defaultValue: -1.0
isOptional: true
parameterType: NUMBER_DOUBLE
transform_dataflow_disk_size_gb:
defaultValue: 40.0
isOptional: true
parameterType: NUMBER_INTEGER
transform_dataflow_machine_type:
defaultValue: n1-standard-16
isOptional: true
parameterType: STRING
transform_dataflow_max_num_workers:
defaultValue: 25.0
isOptional: true
parameterType: NUMBER_INTEGER
transformations:
parameterType: STRING
validation_fraction:
defaultValue: -1.0
isOptional: true
parameterType: NUMBER_DOUBLE
weight_column:
defaultValue: ''
isOptional: true
parameterType: STRING
outputDefinitions:
artifacts:
feature-attribution-2-feature_attributions:
artifactType:
schemaTitle: system.Metrics
schemaVersion: 0.0.1
feature-attribution-3-feature_attributions:
artifactType:
schemaTitle: system.Metrics
schemaVersion: 0.0.1
feature-attribution-feature_attributions:
artifactType:
schemaTitle: system.Metrics
schemaVersion: 0.0.1
model-evaluation-2-evaluation_metrics:
artifactType:
schemaTitle: system.Metrics
schemaVersion: 0.0.1
model-evaluation-3-evaluation_metrics:
artifactType:
schemaTitle: system.Metrics
schemaVersion: 0.0.1
model-evaluation-evaluation_metrics:
artifactType:
schemaTitle: system.Metrics
schemaVersion: 0.0.1
schemaVersion: 2.1.0
sdkVersion: kfp-2.0.0-beta.13