dags/inference/configs/jetstream_benchmark_serving_gce_config.py (160 lines of code) (raw):
# Copyright 2024 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Utilities to construct configs for maxtext inference DAG."""
import datetime
import json
from typing import Dict
from xlml.apis import gcp_config, metric_config, task, test_config
from dags.common import test_owner
from dags.multipod.configs import common
from dags.common.vm_resource import TpuVersion, Project, RuntimeVersion
PROJECT_NAME = Project.CLOUD_ML_AUTO_SOLUTIONS.value
RUNTIME_IMAGE = RuntimeVersion.TPU_UBUNTU2204_BASE.value
GCS_SUBFOLDER_PREFIX = test_owner.Team.INFERENCE.value
def get_config(
tpu_version: TpuVersion,
tpu_cores: int,
tpu_zone: str,
time_out_in_min: int,
test_name: str,
test_mode: common.SetupMode,
project_name: str = PROJECT_NAME,
runtime_version: str = RUNTIME_IMAGE,
network: str = "default",
subnetwork: str = "default",
is_tpu_reserved: bool = True,
num_slices: int = 1,
model_configs: Dict = {},
maxtext_branch: str = "",
jetstream_branch: str = "",
):
job_gcp_config = gcp_config.GCPConfig(
project_name=project_name,
zone=tpu_zone,
dataset_name=metric_config.DatasetOption.BENCHMARK_DATASET,
)
set_up_cmds = (
"pip install --upgrade pip",
# Download jetstream and maxtext
f"if [ ! -d maxtext ]; then git clone {maxtext_branch} https://github.com/google/maxtext.git; fi",
f"if [ ! -d JetStream ]; then git clone {jetstream_branch} https://github.com/google/JetStream.git; fi",
# Create a python virtual environment
"sudo apt-get -y update",
"sudo apt-get -y install python3.10-venv",
"sudo apt-get -y install jq",
"python -m venv .env",
"source .env/bin/activate",
# Setup MaxText & JetStream
f"cd maxtext && bash setup.sh MODE={test_mode.value} && cd ..",
"cd JetStream && pip install -e . && cd benchmarks && pip install -r requirements.in",
"pip install torch --index-url https://download.pytorch.org/whl/cpu",
)
additional_metadata_dict = {
"model_name": f"{model_configs['model_name']}",
"model_mode": f"{model_configs['model_mode']}",
"quant_mode": f"{model_configs['quant_mode']}",
"tokenizer": f"{model_configs['tokenizer']}",
"weight_dtype": f"{model_configs['weight_dtype']}",
"scan_layers": f"{model_configs['scan_layers']}",
"max_prefill_predict_length": f"{model_configs['max_prefill_predict_length']}",
"max_target_length": f"{model_configs['max_target_length']}",
"attention": f"{model_configs['attention']}",
"ici_fsdp_parallelism": f"{model_configs['ici_fsdp_parallelism']}",
"ici_autoregressive_parallelism": f"{model_configs['ici_autoregressive_parallelism']}",
"ici_tensor_parallelism": f"{model_configs['ici_tensor_parallelism']}",
"checkpoint": f"{model_configs['checkpoint']}",
"quantization": f"{model_configs['quantization']}",
"quantize_kvcache": f"{model_configs['quantize_kvcache']}",
"weight_quant_dtype": f"{model_configs['quantization'] if model_configs['quantization'] else 'bf16'}",
"kv_quant_dtype": f"{model_configs['kv_quant_dtype']}",
"per_device_batch_size": f"{model_configs['per_device_batch_size']}",
"dataset": f"{model_configs['dataset']}",
"dataset_path": f"{model_configs['dataset_path']}",
"request_rate": f"{model_configs['request_rate']}",
"num_prompts": f"{model_configs['num_prompts']}",
"max_output_length": f"{model_configs['max_output_length']}",
"warmup_mode": f"{model_configs['warmup_mode']}",
"prefill_cache_axis_order": f"{model_configs['prefill_cache_axis_order']}",
"ar_cache_axis_order": f"{model_configs['ar_cache_axis_order']}",
"compute_axis_order": f"{model_configs['compute_axis_order']}",
"reshape_q": f"{model_configs['reshape_q']}",
"kv_quant_axis": f"{model_configs['kv_quant_axis']}",
}
# Let gcs path be directly used, else use maxtext/assets dir
if not model_configs["tokenizer"].startswith("gs://"):
tokenizer_path = f"assets/{model_configs['tokenizer']}"
full_tokenizer_path = f"maxtext/assets/{model_configs['tokenizer']}"
else:
tokenizer_path = model_configs["tokenizer"]
full_tokenizer_path = model_configs["tokenizer"]
run_model_cmds = (
# Start virtual environment
"source .env/bin/activate",
"wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json > /dev/null 2>&1",
# Get commit hash of the maxtext and jetstream repos
f"export METADATA_DICT='{json.dumps(additional_metadata_dict)}'",
'cd maxtext && export MAXTEXT_COMMIT_HASH=$(git log -1 --format="%H") && cd ..',
'cd JetStream && export JETSTREAM_COMMIT_HASH=$(git log -1 --format="%H") && cd ..',
'export METADATA_DICT=$(jq -c \'. + { "maxtext_commit_hash": $newVal}\' --arg newVal ${MAXTEXT_COMMIT_HASH} <<<"$METADATA_DICT")',
'export METADATA_DICT=$(jq -c \'. + { "jetstream_commit_hash": $newVal}\' --arg newVal ${JETSTREAM_COMMIT_HASH} <<<"$METADATA_DICT")',
### Benchmark
"cd maxtext",
# Configure flags
f"export MODEL_NAME={model_configs['model_name']}",
f"export TOKENIZER_PATH={tokenizer_path}",
f"export WEIGHT_DTYPE={model_configs['weight_dtype']}",
f"export SCAN_LAYERS={model_configs['scan_layers']}",
f"export MAX_PREFILL_PREDICT_LENGTH={model_configs['max_prefill_predict_length']}",
f"export MAX_TARGET_LENGTH={model_configs['max_target_length']}",
f"export ATTENTION={model_configs['attention']}",
f"export ICI_FSDP_PARALLELISM={model_configs['ici_fsdp_parallelism']}",
f"export ICI_AUTOREGRESSIVE_PARALLELISM={model_configs['ici_autoregressive_parallelism']}",
f"export ICI_TENSOR_PARALLELISM={model_configs['ici_tensor_parallelism']}",
f"export UNSCANNED_CKPT_PATH={model_configs['checkpoint']}",
"export LOAD_PARAMETERS_PATH=${UNSCANNED_CKPT_PATH}",
f"export QUANTIZATION={model_configs['quantization']}",
f"export QUANTIZE_KVCACHE={model_configs['quantize_kvcache']}",
f"export KV_QUANT_DTYPE={model_configs['kv_quant_dtype']}",
f"export PER_DEVICE_BATCH_SIZE={model_configs['per_device_batch_size']}",
f"export PREFILL_CACHE_AXIS_ORDER={model_configs['prefill_cache_axis_order']}",
f"export AR_CACHE_AXIS_ORDER={model_configs['ar_cache_axis_order']}",
f"export COMPUTE_AXIS_ORDER={model_configs['compute_axis_order']}",
f"export RESHAPE_Q={model_configs['reshape_q']}",
f"export KV_QUANT_AXIS={model_configs['kv_quant_axis']}",
# Start JetStream MaxText server in the background
"""python3 -m MaxText.maxengine_server \
MaxText/configs/inference_jetstream.yml \
model_name=${MODEL_NAME} \
tokenizer_path=${TOKENIZER_PATH} \
weight_dtype=${WEIGHT_DTYPE} \
scan_layers=${SCAN_LAYERS} \
max_prefill_predict_length=${MAX_PREFILL_PREDICT_LENGTH} \
max_target_length=${MAX_TARGET_LENGTH} \
attention=${ATTENTION} \
ici_fsdp_parallelism=${ICI_FSDP_PARALLELISM} \
ici_autoregressive_parallelism=${ICI_AUTOREGRESSIVE_PARALLELISM} \
ici_tensor_parallelism=${ICI_TENSOR_PARALLELISM} \
load_parameters_path=${LOAD_PARAMETERS_PATH} \
quantization=${QUANTIZATION} \
quantize_kvcache=${QUANTIZE_KVCACHE} \\"""
+ (
"""kv_quant_dtype=${KV_QUANT_DTYPE} \\"""
if model_configs["kv_quant_dtype"]
else ""
)
+ """per_device_batch_size=${PER_DEVICE_BATCH_SIZE} \
prefill_cache_axis_order=${PREFILL_CACHE_AXIS_ORDER} \
ar_cache_axis_order=${AR_CACHE_AXIS_ORDER} \
compute_axis_order=${COMPUTE_AXIS_ORDER} \
reshape_q=${RESHAPE_Q} \
kv_quant_axis=${KV_QUANT_AXIS} &""",
"cd ..",
# Give server time to start
f"sleep {model_configs['sleep_time']}",
# Run benchmark, run eval, save benchmark and eval results, and save predictions to /tmp/request-outputs.json
f"""python JetStream/benchmarks/benchmark_serving.py \
--tokenizer {full_tokenizer_path} \
--model {model_configs['model_name']} \
--dataset {model_configs['dataset']} \\"""
+ (
f"""--dataset-path {model_configs['dataset_path']} \\"""
if model_configs["dataset_path"] != ""
else ""
)
+ f"""--request-rate {model_configs['request_rate']} \
--num-prompts {model_configs['num_prompts']} \
--max-output-length {model_configs['max_output_length']} \
--warmup-mode {model_configs['warmup_mode']} \
--save-result \
--additional-metadata-metrics-to-save ${{METADATA_DICT}} \
--save-request-outputs \
--run-eval {model_configs['run_eval']}""",
'export BENCHMARK_OUTPUT=$(find . -name "*JetStream*" -type f -printf "%T@ %Tc %p\n" | sort -n | head -1 | awk \'NF>1{print $NF}\')',
# Stop JetStream server
"kill -9 %%",
# Upload results (in jsonlines format) to GCS to be post-processed into
# our BigQuery table
"mv ${BENCHMARK_OUTPUT} metric_report.jsonl",
f"gsutil cp metric_report.jsonl {metric_config.SshEnvVars.GCS_OUTPUT.value}",
f"gsutil cp /tmp/request-outputs.json {metric_config.SshEnvVars.GCS_OUTPUT.value}",
)
job_test_config = test_config.TpuVmTest(
test_config.Tpu(
version=tpu_version,
cores=tpu_cores,
runtime_version=runtime_version,
reserved=is_tpu_reserved,
network=network,
subnetwork=subnetwork,
),
test_name=test_name,
set_up_cmds=set_up_cmds,
run_model_cmds=run_model_cmds,
timeout=datetime.timedelta(minutes=time_out_in_min),
task_owner=test_owner.ANDY_Y,
num_slices=num_slices,
gcs_subfolder=f"{GCS_SUBFOLDER_PREFIX}/maxtext",
)
job_metric_config = metric_config.MetricConfig(
json_lines=metric_config.JSONLinesConfig("metric_report.jsonl"),
use_runtime_generated_gcs_folder=True,
)
return task.run_queued_resource_test(
task_test_config=job_test_config,
task_gcp_config=job_gcp_config,
task_metric_config=job_metric_config,
)