dags/inference/configs/trtllm_bench_inference_config.py (99 lines of code) (raw):
# Copyright 2023 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Utilities to construct configs for TensorRT-LLM inference DAG."""
import datetime
from dags.common import test_owner
from xlml.apis import gcp_config, metric_config, task, test_config
from dags.common import vm_resource
from dags.common.vm_resource import Project, RuntimeVersion
RUNTIME_IMAGE = RuntimeVersion.TPU_UBUNTU2204_BASE.value
GCS_SUBFOLDER_PREFIX = test_owner.Team.INFERENCE.value
def get_trtllm_bench_config(
machine_type: vm_resource.MachineVersion,
image_project: vm_resource.ImageProject,
image_family: vm_resource.ImageFamily,
accelerator_type: vm_resource.GpuVersion,
count: int,
gpu_zone: vm_resource.Zone,
time_out_in_min: int,
test_name: str,
project: Project,
network: str,
subnetwork: str,
existing_instance_name: str = None,
) -> task.GpuCreateResourceTask:
set_up_cmds = (
"pip install --upgrade pip",
# Install Nvidia driver.
"wget -c https://us.download.nvidia.com/tesla/550.54.15/NVIDIA-Linux-x86_64-550.54.15.run",
"chmod u+x NVIDIA-Linux-x86_64-550.54.15.run",
"sudo ./NVIDIA-Linux-x86_64-550.54.15.run -x-module-path=/usr/lib/xorg/modules --ui=none -x-library-path=/usr/lib -q",
"sudo nvidia-smi -pm 1",
# Format and mount multiple Local SSD
"sudo apt update && sudo apt install mdadm --no-install-recommends",
"find /dev/ | grep google-local-nvme-ssd",
"sudo mdadm --create /dev/md0 --level=0 --raid-devices=$(find /dev/ -name 'google-local-nvme-ssd*' | wc -l) $(find /dev/ -name 'google-local-nvme-ssd*')",
"sudo mdadm --detail --prefer=by-id /dev/md0",
"sudo mkfs.ext4 -F /dev/md0",
"sudo mkdir -p /scratch",
"sudo mount /dev/md0 /scratch",
"sudo chmod a+w /scratch",
"cd /scratch",
"pip install jsonlines",
"wget https://raw.githubusercontent.com/GoogleCloudPlatform/ml-auto-solutions/refs/heads/master/dags/inference/utils/trtllm_bench_jsonl_converter.py",
# Install TensorRT-LLM.
"sudo apt-get update",
"sudo apt-get -y install git git-lfs",
"git clone https://github.com/NVIDIA/TensorRT-LLM.git",
"cd TensorRT-LLM",
"git submodule update --init --recursive",
"git lfs install",
"git lfs pull",
"make -C docker release_build",
"make -C docker release_run DOCKER_RUN_ARGS='--detach -v /scratch:/scratch' RUN_CMD='sleep infinity'",
)
jsonl_output_path = "metric_report.jsonl"
docker_container_name = "tensorrt_llm-release-yijiaj"
docker_cmds = (
"cp /scratch/trtllm-bench-test.sh trtllm-bench.sh",
"chmod +x trtllm-bench.sh",
"./trtllm-bench.sh",
)
docker_cmd = " && ".join(docker_cmds)
run_model_cmds = (
"cd /scratch",
f'docker exec -i {docker_container_name} /bin/bash -c "{docker_cmd}"',
f"python3 trtllm_bench_jsonl_converter.py {jsonl_output_path}",
f"cat {jsonl_output_path}",
f"gsutil cp {jsonl_output_path} {metric_config.SshEnvVars.GCS_OUTPUT.value}",
)
job_test_config = test_config.GpuVmTest(
test_config.Gpu(
machine_type=machine_type.value,
image_family=image_family.value,
count=count,
accelerator_type=accelerator_type.value,
runtime_version=RUNTIME_IMAGE,
network=network,
subnetwork=subnetwork,
disk_size_gb=1000,
),
test_name=test_name,
set_up_cmds=set_up_cmds,
run_model_cmds=run_model_cmds,
timeout=datetime.timedelta(minutes=time_out_in_min),
task_owner=test_owner.YIJIA_J,
gcs_subfolder=f"{GCS_SUBFOLDER_PREFIX}/trt_llm_bench",
use_existing_instance=existing_instance_name is not None,
)
job_gcp_config = gcp_config.GCPConfig(
project_name=project.value,
zone=gpu_zone.value,
dataset_name=metric_config.DatasetOption.BENCHMARK_DATASET,
)
job_metric_config = metric_config.MetricConfig(
json_lines=metric_config.JSONLinesConfig("metric_report.jsonl"),
use_runtime_generated_gcs_folder=True,
)
return task.GpuCreateResourceTask(
image_project.value,
image_family.value,
job_test_config,
job_gcp_config,
job_metric_config,
existing_instance_name=existing_instance_name,
)