dags/multipod/maxtext_sft_trainer.py (44 lines of code) (raw):
# Copyright 2025 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""DAG to run MaxText SFT Trainer tests."""
import datetime
from airflow import models
from dags import composer_env, gcs_bucket
from dags.common import test_owner
from dags.common.vm_resource import DockerImage, XpkClusters
from dags.multipod.configs import gke_config
from dags.multipod.configs.common import SetupMode
# Run once a day at 10 am UTC (2 am PST)
SCHEDULED_TIME = '0 10 * * *' if composer_env.is_prod_env() else None
HF_TOKEN = models.Variable.get('HF_TOKEN', None)
with models.DAG(
dag_id='maxtext_sft_trainer',
schedule=SCHEDULED_TIME,
tags=['multipod_team', 'maxtext', 'stable', 'nightly', 'mlscale_devx'],
start_date=datetime.datetime(2025, 3, 1),
catchup=False,
concurrency=2,
) as dag:
base_output_directory = f'{gcs_bucket.BASE_OUTPUT_DIR}/maxtext_sft_trainer'
docker_images = [
(SetupMode.STABLE, DockerImage.MAXTEXT_TPU_JAX_STABLE_STACK),
(SetupMode.NIGHTLY, DockerImage.MAXTEXT_TPU_JAX_NIGHTLY),
]
for mode, image in docker_images:
command = (
f'export HF_TOKEN={HF_TOKEN}',
'export PRE_TRAINED_MODEL=llama2-7b',
'export PRE_TRAINED_MODEL_TOKENIZER=meta-llama/Llama-2-7b-hf',
'export PRE_TRAINED_MODEL_CKPT_PATH=gs://maxtext-model-checkpoints/llama2-7b/2025-01-23-19-26/scanned/0/items',
f'export BASE_OUTPUT_DIRECTORY={base_output_directory}',
'export STEPS=2500',
'export PROMPT="Suggest some famous landmarks in London."',
'export RTOL=1e-05',
'export ATOL=0.09',
'export KL_DIV=7e-05',
'bash end_to_end/tpu/test_sft_trainer.sh',
)
maxtext_v4_configs_test = gke_config.get_gke_config(
cluster=XpkClusters.TPU_V4_8_MAXTEXT_CLUSTER,
time_out_in_min=60,
test_name=f'sft-trainer-{mode.value}',
run_model_cmds=command,
docker_image=image.value,
test_owner=test_owner.SURBHI_J,
).run()