dags/sparsity_diffusion_devx/jax_stable_stack_tpu_e2e.py (114 lines of code) (raw):
# Copyright 2024 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""A DAG to run end-to-end JAX Stable Stack TPU tests."""
import datetime
from airflow import models
from airflow.utils.task_group import TaskGroup
from dags import composer_env, gcs_bucket
from dags.common import test_owner
from dags.common.vm_resource import Project, TpuVersion, CpuVersion, Zone, DockerImage, GpuVersion, XpkClusters
from dags.sparsity_diffusion_devx.configs import gke_config as config
from dags.multipod.configs.common import SetupMode
from xlml.utils import name_format
# Run once a day at 3 am UTC (7 pm PST)
SCHEDULED_TIME = "0 3 * * *" if composer_env.is_prod_env() else None
with models.DAG(
dag_id="jax_stable_stack_tpu_e2e",
schedule=SCHEDULED_TIME,
tags=[
"sparsity_diffusion_devx",
"multipod_team",
"maxtext",
"maxdiffusion",
"axlearn",
"tpu",
"jax-stable-stack",
"mlscale_devx",
],
start_date=datetime.datetime(2024, 6, 7),
catchup=False,
) as dag:
current_datetime = config.get_current_datetime()
maxtext_test_configs = {
# accelerator: list of slices to test
"v4-16": [1, 2],
"v6e-256": [1],
}
maxdiffusion_test_configs = {
# accelerator: list of slices to test
"v4-8": [1],
"v6e-256": [1],
}
axlearn_test_configs = {
# accelerator: list of slices to test
"v4-16": [1],
}
quarantine_task_group = TaskGroup(
group_id="Quarantine", dag=dag, prefix_group_id=False
)
maxtext_docker_images = [
(SetupMode.STABLE, DockerImage.MAXTEXT_TPU_JAX_STABLE_STACK_CANDIDATE),
(SetupMode.NIGHTLY, DockerImage.MAXTEXT_TPU_STABLE_STACK_NIGHTLY_JAX),
]
maxdiffusion_docker_images = [
(
SetupMode.STABLE,
DockerImage.MAXDIFFUSION_TPU_JAX_STABLE_STACK,
),
(
SetupMode.NIGHTLY,
DockerImage.MAXDIFFUSION_TPU_STABLE_STACK_NIGHTLY_JAX,
),
]
for accelerator, slices in maxtext_test_configs.items():
cores = accelerator.rsplit("-", maxsplit=1)[-1]
cluster = config.clusters[accelerator]
for slice_num in slices:
for mode, image in maxtext_docker_images:
maxtext_jax_stable_stack_test = config.get_gke_config(
num_slices=slice_num,
cluster=cluster,
time_out_in_min=60,
run_model_cmds=(
f"JAX_PLATFORMS=tpu,cpu ENABLE_PJRT_COMPATIBILITY=true TPU_SLICE_BUILDER_DUMP_CHIP_FORCE=true TPU_SLICE_BUILDER_DUMP_ICI=true JAX_FORCE_TPU_INIT=true ENABLE_TPUNETD_CLIENT=true && "
f"python -m MaxText.train MaxText/configs/base.yml run_name={slice_num}slice-V{cluster.device_version}_{cores}-maxtext-jax-stable-stack-{current_datetime} "
"steps=30 per_device_batch_size=1 max_target_length=4096 model_name=llama2-7b "
"enable_checkpointing=false attention=dot_product remat_policy=minimal_flash use_iota_embed=true scan_layers=false "
"dataset_type=synthetic async_checkpointing=false "
f"base_output_directory={gcs_bucket.BASE_OUTPUT_DIR}/maxtext/jax-stable-stack/automated/{current_datetime}",
),
test_name=f"maxtext-jax-stable-stack-{mode.value}-{accelerator}-{slice_num}x",
docker_image=image.value,
test_owner=test_owner.PARAM_B,
).run_with_quarantine(quarantine_task_group)
for accelerator, slices in maxdiffusion_test_configs.items():
cores = accelerator.rsplit("-", maxsplit=1)[-1]
cluster = config.clusters[accelerator]
for slice_num in slices:
for mode, image in maxdiffusion_docker_images:
maxdiffusion_jax_stable_stack_test = config.get_gke_config(
num_slices=slice_num,
cluster=cluster,
time_out_in_min=60,
run_model_cmds=(
f"JAX_PLATFORMS=tpu,cpu ENABLE_PJRT_COMPATIBILITY=true TPU_SLICE_BUILDER_DUMP_CHIP_FORCE=true TPU_SLICE_BUILDER_DUMP_ICI=true JAX_FORCE_TPU_INIT=true ENABLE_TPUNETD_CLIENT=true && "
f"pip install . && python src/maxdiffusion/train.py src/maxdiffusion/configs/base_2_base.yml "
f"run_name={slice_num}slice-V{cluster.device_version}_{cores}-maxdiffusion-jax-stable-stack-{current_datetime} "
f"output_dir={gcs_bucket.BASE_OUTPUT_DIR}/maxdiffusion-jax-stable-stack-{mode.value}-{accelerator}-{slice_num}/automated/{current_datetime}",
),
test_name=f"maxdiffusion-jax-stable-stack-{mode.value}-{accelerator}-{slice_num}x",
docker_image=DockerImage.MAXDIFFUSION_TPU_JAX_STABLE_STACK.value,
test_owner=test_owner.PARAM_B,
).run_with_quarantine(quarantine_task_group)
for accelerator, slices in axlearn_test_configs.items():
cores = accelerator.rsplit("-", maxsplit=1)[-1]
cluster = config.clusters[accelerator]
for slice_num in slices:
axlearn_jax_stable_stack_test = config.get_gke_config(
num_slices=slice_num,
cluster=cluster,
time_out_in_min=300,
run_model_cmds=(
"JAX_PLATFORMS=tpu,cpu ENABLE_PJRT_COMPATIBILITY=true TPU_SLICE_BUILDER_DUMP_CHIP_FORCE=true TPU_SLICE_BUILDER_DUMP_ICI=true JAX_FORCE_TPU_INIT=true ENABLE_TPUNETD_CLIENT=true && "
"cd axlearn && python -m axlearn.common.launch_trainer_main "
f"--module=text.gpt.c4_trainer --config=fuji-test-v1 "
f"--trainer_dir={gcs_bucket.BASE_OUTPUT_DIR}/bite/jax-stable-stack/automated/{current_datetime} "
f"--data_dir={gcs_bucket.AXLEARN_DIR} --jax_backend=tpu ",
),
test_name=f"axlearn-jax-stable-stack-{accelerator}-{slice_num}x",
docker_image=DockerImage.AXLEARN_TPU_JAX_STABLE_STACK.value,
test_owner=test_owner.PARAM_B,
).run_with_quarantine(quarantine_task_group)