in example_zoo/tensorflow/models/mnist/official/mnist/mnist.py [0:0]
def model_fn(features, labels, mode, params):
"""The model_fn argument for creating an Estimator."""
model = create_model(params['data_format'])
image = features
if isinstance(image, dict):
image = features['image']
if mode == tf.estimator.ModeKeys.PREDICT:
logits = model(image, training=False)
predictions = {
'classes': tf.argmax(logits, axis=1),
'probabilities': tf.nn.softmax(logits),
}
return tf.estimator.EstimatorSpec(
mode=tf.estimator.ModeKeys.PREDICT,
predictions=predictions,
export_outputs={
'classify': tf.estimator.export.PredictOutput(predictions)
})
if mode == tf.estimator.ModeKeys.TRAIN:
optimizer = tf.train.AdamOptimizer(learning_rate=LEARNING_RATE)
logits = model(image, training=True)
loss = tf.losses.sparse_softmax_cross_entropy(labels=labels, logits=logits)
accuracy = tf.metrics.accuracy(
labels=labels, predictions=tf.argmax(logits, axis=1))
# Name tensors to be logged with LoggingTensorHook.
tf.identity(LEARNING_RATE, 'learning_rate')
tf.identity(loss, 'cross_entropy')
tf.identity(accuracy[1], name='train_accuracy')
# Save accuracy scalar to Tensorboard output.
tf.summary.scalar('train_accuracy', accuracy[1])
return tf.estimator.EstimatorSpec(
mode=tf.estimator.ModeKeys.TRAIN,
loss=loss,
train_op=optimizer.minimize(loss, tf.train.get_or_create_global_step()))
if mode == tf.estimator.ModeKeys.EVAL:
logits = model(image, training=False)
loss = tf.losses.sparse_softmax_cross_entropy(labels=labels, logits=logits)
return tf.estimator.EstimatorSpec(
mode=tf.estimator.ModeKeys.EVAL,
loss=loss,
eval_metric_ops={
'accuracy':
tf.metrics.accuracy(
labels=labels, predictions=tf.argmax(logits, axis=1)),
})