in tutorials/tensorflow/mlflow_gcp/trainer/task.py [0:0]
def get_args():
"""Argument parser.
Returns:
Dictionary of arguments.
"""
parser = argparse.ArgumentParser()
parser.add_argument(
'--train-files',
help='GCS file or local paths to training data',
default='gs://cloud-samples-data/ml-engine/census/data/adult.data.csv')
parser.add_argument(
'--eval-files',
help='GCS file or local paths to evaluation data',
default='gs://cloud-samples-data/ml-engine/census/data/adult.test.csv')
parser.add_argument(
'--job-dir',
type=str,
required=True,
help='Local or GCS location for writing checkpoints and exporting '
'models')
parser.add_argument(
'--num-epochs',
type=int,
default=20,
help='Number of times to go through the data, default=20')
parser.add_argument(
'--batch-size',
default=64,
type=int,
help='Number of records to read during each training step, default=128')
parser.add_argument(
'--learning-rate',
default=.01,
type=float,
help='Learning rate for gradient descent, default=.01')
parser.add_argument(
'--eval-steps',
help='Number of steps to run evaluation for, at each checkpoint',
default=1,
type=int)
parser.add_argument(
'--reuse-job-dir',
action='store_true',
default=False,
help="""