def run_ncf()

in example_zoo/tensorflow/models/ncf_main/official/recommendation/ncf_main.py [0:0]


def run_ncf(_):
  """Run NCF training and eval loop."""
  if FLAGS.download_if_missing and not FLAGS.use_synthetic_data:
    movielens.download(FLAGS.dataset, FLAGS.data_dir)

  if FLAGS.seed is not None:
    np.random.seed(FLAGS.seed)

  params = parse_flags(FLAGS)
  total_training_cycle = FLAGS.train_epochs // FLAGS.epochs_between_evals

  if FLAGS.use_synthetic_data:
    producer = data_pipeline.DummyConstructor()
    num_users, num_items = data_preprocessing.DATASET_TO_NUM_USERS_AND_ITEMS[
        FLAGS.dataset]
    num_train_steps = rconst.SYNTHETIC_BATCHES_PER_EPOCH
    num_eval_steps = rconst.SYNTHETIC_BATCHES_PER_EPOCH
  else:
    num_users, num_items, producer = data_preprocessing.instantiate_pipeline(
        dataset=FLAGS.dataset, data_dir=FLAGS.data_dir, params=params,
        constructor_type=FLAGS.constructor_type,
        deterministic=FLAGS.seed is not None)

    num_train_steps = (producer.train_batches_per_epoch //
                       params["batches_per_step"])
    num_eval_steps = (producer.eval_batches_per_epoch //
                      params["batches_per_step"])
    assert not producer.train_batches_per_epoch % params["batches_per_step"]
    assert not producer.eval_batches_per_epoch % params["batches_per_step"]
  producer.start()

  params["num_users"], params["num_items"] = num_users, num_items
  model_helpers.apply_clean(flags.FLAGS)

  estimator = construct_estimator(model_dir=FLAGS.model_dir, params=params)

  benchmark_logger, train_hooks = log_and_get_hooks(params["eval_batch_size"])

  target_reached = False
  mlperf_helper.ncf_print(key=mlperf_helper.TAGS.TRAIN_LOOP)
  for cycle_index in range(total_training_cycle):
    assert FLAGS.epochs_between_evals == 1 or not mlperf_helper.LOGGER.enabled
    tf.logging.info("Starting a training cycle: {}/{}".format(
        cycle_index + 1, total_training_cycle))

    mlperf_helper.ncf_print(key=mlperf_helper.TAGS.TRAIN_EPOCH,
                            value=cycle_index)

    train_input_fn = producer.make_input_fn(is_training=True)
    estimator.train(input_fn=train_input_fn, hooks=train_hooks,
                    steps=num_train_steps)

    tf.logging.info("Beginning evaluation.")
    eval_input_fn = producer.make_input_fn(is_training=False)

    mlperf_helper.ncf_print(key=mlperf_helper.TAGS.EVAL_START,
                            value=cycle_index)
    eval_results = estimator.evaluate(eval_input_fn, steps=num_eval_steps)
    tf.logging.info("Evaluation complete.")

    hr = float(eval_results[rconst.HR_KEY])
    ndcg = float(eval_results[rconst.NDCG_KEY])
    loss = float(eval_results["loss"])

    mlperf_helper.ncf_print(
        key=mlperf_helper.TAGS.EVAL_TARGET,
        value={"epoch": cycle_index, "value": FLAGS.hr_threshold})
    mlperf_helper.ncf_print(key=mlperf_helper.TAGS.EVAL_ACCURACY,
                            value={"epoch": cycle_index, "value": hr})
    mlperf_helper.ncf_print(
        key=mlperf_helper.TAGS.EVAL_HP_NUM_NEG,
        value={"epoch": cycle_index, "value": rconst.NUM_EVAL_NEGATIVES})

    mlperf_helper.ncf_print(key=mlperf_helper.TAGS.EVAL_STOP, value=cycle_index)

    # Benchmark the evaluation results
    benchmark_logger.log_evaluation_result(eval_results)
    # Log the HR and NDCG results.
    tf.logging.info(
        "Iteration {}: HR = {:.4f}, NDCG = {:.4f}, Loss = {:.4f}".format(
            cycle_index + 1, hr, ndcg, loss))

    # If some evaluation threshold is met
    if model_helpers.past_stop_threshold(FLAGS.hr_threshold, hr):
      target_reached = True
      break

  mlperf_helper.ncf_print(key=mlperf_helper.TAGS.RUN_STOP,
                          value={"success": target_reached})
  producer.stop_loop()
  producer.join()

  # Clear the session explicitly to avoid session delete error
  tf.keras.backend.clear_session()

  mlperf_helper.ncf_print(key=mlperf_helper.TAGS.RUN_FINAL)