def __init__()

in example_zoo/tensorflow/models/keras_cifar_main/official/resnet/resnet_model.py [0:0]


  def __init__(self, resnet_size, bottleneck, num_classes, num_filters,
               kernel_size,
               conv_stride, first_pool_size, first_pool_stride,
               block_sizes, block_strides,
               resnet_version=DEFAULT_VERSION, data_format=None,
               dtype=DEFAULT_DTYPE):
    """Creates a model for classifying an image.

    Args:
      resnet_size: A single integer for the size of the ResNet model.
      bottleneck: Use regular blocks or bottleneck blocks.
      num_classes: The number of classes used as labels.
      num_filters: The number of filters to use for the first block layer
        of the model. This number is then doubled for each subsequent block
        layer.
      kernel_size: The kernel size to use for convolution.
      conv_stride: stride size for the initial convolutional layer
      first_pool_size: Pool size to be used for the first pooling layer.
        If none, the first pooling layer is skipped.
      first_pool_stride: stride size for the first pooling layer. Not used
        if first_pool_size is None.
      block_sizes: A list containing n values, where n is the number of sets of
        block layers desired. Each value should be the number of blocks in the
        i-th set.
      block_strides: List of integers representing the desired stride size for
        each of the sets of block layers. Should be same length as block_sizes.
      resnet_version: Integer representing which version of the ResNet network
        to use. See README for details. Valid values: [1, 2]
      data_format: Input format ('channels_last', 'channels_first', or None).
        If set to None, the format is dependent on whether a GPU is available.
      dtype: The TensorFlow dtype to use for calculations. If not specified
        tf.float32 is used.

    Raises:
      ValueError: if invalid version is selected.
    """
    self.resnet_size = resnet_size

    if not data_format:
      data_format = (
          'channels_first' if tf.test.is_built_with_cuda() else 'channels_last')

    self.resnet_version = resnet_version
    if resnet_version not in (1, 2):
      raise ValueError(
          'Resnet version should be 1 or 2. See README for citations.')

    self.bottleneck = bottleneck
    if bottleneck:
      if resnet_version == 1:
        self.block_fn = _bottleneck_block_v1
      else:
        self.block_fn = _bottleneck_block_v2
    else:
      if resnet_version == 1:
        self.block_fn = _building_block_v1
      else:
        self.block_fn = _building_block_v2

    if dtype not in ALLOWED_TYPES:
      raise ValueError('dtype must be one of: {}'.format(ALLOWED_TYPES))

    self.data_format = data_format
    self.num_classes = num_classes
    self.num_filters = num_filters
    self.kernel_size = kernel_size
    self.conv_stride = conv_stride
    self.first_pool_size = first_pool_size
    self.first_pool_stride = first_pool_stride
    self.block_sizes = block_sizes
    self.block_strides = block_strides
    self.dtype = dtype
    self.pre_activation = resnet_version == 2