def build_input_pipeline()

in example_zoo/tensorflow/probability/vq_vae/trainer/vq_vae.py [0:0]


def build_input_pipeline(data_dir, batch_size, heldout_size, mnist_type):
  """Builds an Iterator switching between train and heldout data."""
  # Build an iterator over training batches.
  if mnist_type in [MnistType.FAKE_DATA, MnistType.THRESHOLD]:
    if mnist_type == MnistType.FAKE_DATA:
      mnist_data = build_fake_data()
    else:
      mnist_data = mnist.read_data_sets(data_dir)
    training_dataset = tf.data.Dataset.from_tensor_slices(
        (mnist_data.train.images, np.int32(mnist_data.train.labels)))
    heldout_dataset = tf.data.Dataset.from_tensor_slices(
        (mnist_data.validation.images,
         np.int32(mnist_data.validation.labels)))
  elif mnist_type == MnistType.BERNOULLI:
    training_dataset = load_bernoulli_mnist_dataset(data_dir, "train")
    heldout_dataset = load_bernoulli_mnist_dataset(data_dir, "valid")
  else:
    raise ValueError("Unknown MNIST type.")

  training_batches = training_dataset.repeat().batch(batch_size)
  training_iterator = tf.compat.v1.data.make_one_shot_iterator(training_batches)

  # Build a iterator over the heldout set with batch_size=heldout_size,
  # i.e., return the entire heldout set as a constant.
  heldout_frozen = (heldout_dataset.take(heldout_size).
                    repeat().batch(heldout_size))
  heldout_iterator = tf.compat.v1.data.make_one_shot_iterator(heldout_frozen)

  # Combine these into a feedable iterator that can switch between training
  # and validation inputs.
  handle = tf.compat.v1.placeholder(tf.string, shape=[])
  feedable_iterator = tf.compat.v1.data.Iterator.from_string_handle(
      handle, training_batches.output_types, training_batches.output_shapes)
  images, labels = feedable_iterator.get_next()
  # Reshape as a pixel image and binarize pixels.
  images = tf.reshape(images, shape=[-1] + IMAGE_SHAPE)
  if mnist_type in [MnistType.FAKE_DATA, MnistType.THRESHOLD]:
    images = tf.cast(images > 0.5, dtype=tf.int32)

  return images, labels, handle, training_iterator, heldout_iterator