example_zoo/tools/tf_probability_samples.yaml (106 lines of code) (raw):
org: tensorflow
repository: probability
branch: "r0.7"
runtime_version: "1.14"
requires:
- "tensorflow_probability==0.7"
samples:
- module_path: tensorflow_probability/examples
script_name: bayesian_neural_network.py
requires:
- "seaborn==0.9.0"
tfgfile_wrap:
- plot_weight_posteriors
- plot_heldout_prediction
args:
- "--max_steps=3"
- "--viz_steps=3"
artifact: weights.png
wait_time: 300
# TODO: udpate the source example to write artifacts to model_dir
# - module_paty: tensorflow_probability
# script_path: examples
# script_name: cifar10_bnn.py
# requires:
# - "matplotlib==2.2.4"
# args:
# - "--fake_data"
# - "--epochs=1"
# artifact:
# wait_time: 180
- module_path: tensorflow_probability/examples
script_name: deep_exponential_family.py
args:
- "--fake_data"
- "--max_steps=1000"
- "--layer_sizes=5,3,2"
artifact: events.out.tfevents
wait_time: 180
# TODO: fix the source example to allow using source finder (blocked by the tensorflow_probability name collision)
# - module_path: tensorflow_probability
# script_path: examples
# script_name: disentangled_vae.py
# replace:
# - - "from tensorflow_probability.examples import sprites_dataset"
# - "from examples import sprites_dataset"
# args:
# - "--fake_data"
# - "--batch_size=2"
# - "--hidden_size=3"
# - "--latent_size_static=4"
# - "--latent_size_dynamic=5"
# - "--log_steps=1"
# - "--max_steps=2"
# - "--enable_debug_logging"
# artifact: -1.data-00000-of-00001
# wait_time: 180
- module_path: tensorflow_probability/examples
script_name: generative_adversarial_network.py
requires:
- "matplotlib==2.2.4"
tfgfile_wrap:
- plot_generated_images
# TODO: update the source example
replace:
- - "import matplotlib.pyplot as plt"
- "from matplotlib import figure"
- - "plt.figure"
- "figure.Figure"
- - "plt.axis"
- "ax.axis"
- - "plt.subplots_adjust"
- "fig.subplots_adjust"
args:
- "--fake_data"
- "--max_steps=5"
- "--viz_steps=5"
artifact: _images.png
wait_time: 240
- module_path: tensorflow_probability/examples
script_name: grammar_vae.py
args:
- "--max_steps=5"
- "--latent_size=2"
- "--num_units=3"
artifact: -1.data-00000-of-00001
wait_time: 240
- module_path: tensorflow_probability/examples
script_name: latent_dirichlet_allocation_distributions.py
args:
- "--fake_data"
- "--max_steps=5"
- "--delete_existing"
- "--viz_steps=5"
artifact: .data-00000-of-00001
wait_time: 180
- module_path: tensorflow_probability/examples
script_name: latent_dirichlet_allocation_edward2.py
args:
- "--fake_data"
- "--max_steps=5"
- "--delete_existing"
- "--viz_steps=5"
artifact: .data-00000-of-00001
wait_time: 180
- module_path: tensorflow_probability/examples
script_name: logistic_regression.py
requires:
- "matplotlib==2.2.4"
tfgfile_wrap:
- visualize_decision
args:
- "--num_examples=32"
- "--batch_size=8"
- "--max_steps=50"
artifact: weights_inferred.png
wait_time: 180
- module_path: tensorflow_probability/examples
script_name: vae.py
args:
- "--fake_data"
- "--max_steps=5"
- "--delete_existing"
- "--viz_steps=5"
artifact: .data-00000-of-00001
wait_time: 180
- module_path: tensorflow_probability/examples
script_name: vq_vae.py
requires:
- "matplotlib==2.2.4"
tfgfile_wrap:
- save_imgs
args:
- "--max_steps=2"
- "--base_depth=2"
artifact: validation_reconstructions.png
wait_time: 240