example_zoo/tools/tf_probability_samples.yaml (106 lines of code) (raw):

org: tensorflow repository: probability branch: "r0.7" runtime_version: "1.14" requires: - "tensorflow_probability==0.7" samples: - module_path: tensorflow_probability/examples script_name: bayesian_neural_network.py requires: - "seaborn==0.9.0" tfgfile_wrap: - plot_weight_posteriors - plot_heldout_prediction args: - "--max_steps=3" - "--viz_steps=3" artifact: weights.png wait_time: 300 # TODO: udpate the source example to write artifacts to model_dir # - module_paty: tensorflow_probability # script_path: examples # script_name: cifar10_bnn.py # requires: # - "matplotlib==2.2.4" # args: # - "--fake_data" # - "--epochs=1" # artifact: # wait_time: 180 - module_path: tensorflow_probability/examples script_name: deep_exponential_family.py args: - "--fake_data" - "--max_steps=1000" - "--layer_sizes=5,3,2" artifact: events.out.tfevents wait_time: 180 # TODO: fix the source example to allow using source finder (blocked by the tensorflow_probability name collision) # - module_path: tensorflow_probability # script_path: examples # script_name: disentangled_vae.py # replace: # - - "from tensorflow_probability.examples import sprites_dataset" # - "from examples import sprites_dataset" # args: # - "--fake_data" # - "--batch_size=2" # - "--hidden_size=3" # - "--latent_size_static=4" # - "--latent_size_dynamic=5" # - "--log_steps=1" # - "--max_steps=2" # - "--enable_debug_logging" # artifact: -1.data-00000-of-00001 # wait_time: 180 - module_path: tensorflow_probability/examples script_name: generative_adversarial_network.py requires: - "matplotlib==2.2.4" tfgfile_wrap: - plot_generated_images # TODO: update the source example replace: - - "import matplotlib.pyplot as plt" - "from matplotlib import figure" - - "plt.figure" - "figure.Figure" - - "plt.axis" - "ax.axis" - - "plt.subplots_adjust" - "fig.subplots_adjust" args: - "--fake_data" - "--max_steps=5" - "--viz_steps=5" artifact: _images.png wait_time: 240 - module_path: tensorflow_probability/examples script_name: grammar_vae.py args: - "--max_steps=5" - "--latent_size=2" - "--num_units=3" artifact: -1.data-00000-of-00001 wait_time: 240 - module_path: tensorflow_probability/examples script_name: latent_dirichlet_allocation_distributions.py args: - "--fake_data" - "--max_steps=5" - "--delete_existing" - "--viz_steps=5" artifact: .data-00000-of-00001 wait_time: 180 - module_path: tensorflow_probability/examples script_name: latent_dirichlet_allocation_edward2.py args: - "--fake_data" - "--max_steps=5" - "--delete_existing" - "--viz_steps=5" artifact: .data-00000-of-00001 wait_time: 180 - module_path: tensorflow_probability/examples script_name: logistic_regression.py requires: - "matplotlib==2.2.4" tfgfile_wrap: - visualize_decision args: - "--num_examples=32" - "--batch_size=8" - "--max_steps=50" artifact: weights_inferred.png wait_time: 180 - module_path: tensorflow_probability/examples script_name: vae.py args: - "--fake_data" - "--max_steps=5" - "--delete_existing" - "--viz_steps=5" artifact: .data-00000-of-00001 wait_time: 180 - module_path: tensorflow_probability/examples script_name: vq_vae.py requires: - "matplotlib==2.2.4" tfgfile_wrap: - save_imgs args: - "--max_steps=2" - "--base_depth=2" artifact: validation_reconstructions.png wait_time: 240