nl2sql_library/nl2sql/commons/utils/classifiers.py (15 lines of code) (raw):
# Copyright 2024 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Allows classifying unstructured text into defined categories.
"""
from typing import Literal
from langchain.embeddings import VertexAIEmbeddings
from langchain.schema import Document
from langchain.vectorstores.chroma import Chroma
_yes_no_classifier = Chroma.from_documents(
[
Document(page_content="No", metadata={"relevant": "False"}),
Document(page_content="Yes", metadata={"relevant": "True"}),
],
VertexAIEmbeddings(),
).as_retriever(search_type="similarity", search_kwargs={"k": 1})
def yes_no_classifier(target: str) -> Literal["True", "False"]:
"""
Categorizes arbitrary incoming string into "True"/"False" lterals
"""
return _yes_no_classifier.get_relevant_documents(target.lower())[0].metadata[
"relevant"
]