nl2sql_library/nl2sql/datasets/standard.py (166 lines of code) (raw):

# Copyright 2024 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Allows importing and using Standard Datasets """ import json import os import typing from abc import ABC from tempfile import gettempdir from zipfile import ZipFile from google.cloud import storage # type: ignore[attr-defined] from typing_extensions import TypedDict from nl2sql.datasets.base import Dataset class StandardDataset(ABC): """ Base class for all Standard Datasets """ dataset_id: str = "StandardDataset" dataset_splits: list[str] = [] def __init__(self) -> None: """ Method to auomatically download and set up the dataset """ raise NotImplementedError def dataset(self, **kwargs) -> Dataset: """ Method to return subbsets of the Standard Dataset object as Dataset objects """ raise NotImplementedError SpiderCoreSpec = TypedDict( "SpiderCoreSpec", { "db_id": str, "query": str, "conn_str": str, "query_toks": list[str], "query_toks_no_value": list[str], "question": str, "question_toks": list[str], "sql": dict[ typing.Literal[ "from", "select", "where", "groupBy", "having", "orderBy", "limit", "intersect", "union", "except", ], typing.Any, ], }, ) class Spider(StandardDataset): """ Allows downloading and interacting with the Spider Dataset """ dataset_id: str = "Spider" dataset_splits: list[str] = ["test", "train"] bucket_name: str = "nl2sql-internal-v2" zipfile_path: str = "assets/datasets/spider/spider.zip" temp_loc = os.path.join(gettempdir(), "NL2SQL_SPIDER_DATASET") temp_extracted_loc = os.path.join( gettempdir(), "NL2SQL_SPIDER_DATASET", "extracted" ) promblematic_databases: typing.ClassVar[ dict[typing.Literal["errors", "warnings"], list[str]] ] = { "errors": [ "wta_1", "soccer_1", "baseball_1", "store_1", "flight_1", "sakila_1", "world_1", "store_product", "college_1", "music_1", "loan_1", "hospital_1", "tracking_grants_for_research", # Special Characters in col name "aircraft", # Special Characters in column name "perpetrator", # Special Characters in column name "orchestra", # Special Characters in column name ], "warnings": [ "bike_1", "cre_Drama_Workshop_Groups", "apartment_rentals", "insurance_and_eClaims", "soccer_2", "tracking_grants_for_research", "customer_deliveries", "dog_kennels", "chinook_1", "real_estate_properties", "department_store", "twitter_1", "products_for_hire", "manufactory_1", "college_2", "tracking_share_transactions", "hr_1", "customers_and_invoices", "customer_complaints", "behavior_monitoring", "aircraft", "solvency_ii", ], } def __init__(self) -> None: """ Method to auomatically download and set up the Spider dataset """ if not ( os.path.exists( os.path.join( self.temp_extracted_loc, "spider", "train_spider.json" ) ) or os.path.exists( os.path.join(self.temp_extracted_loc, "spider", "dev.json") ) or os.path.exists( os.path.join(self.temp_extracted_loc, "spider", "database") ) ): if not os.path.exists(self.temp_extracted_loc): os.makedirs(self.temp_extracted_loc) temp_zipfile_path = os.path.join(self.temp_loc, "spider.zip") if not os.path.exists(temp_zipfile_path): storage.Client().get_bucket(self.bucket_name).blob( self.zipfile_path ).download_to_filename(temp_zipfile_path) with ZipFile(temp_zipfile_path, "r") as zipped_file: zipped_file.extractall(path=self.temp_extracted_loc) def fetch_raw_data( self, split: typing.Literal["test", "train"], strict: bool = False ) -> list[SpiderCoreSpec]: """ Returns the raw data from the Spider Dataset """ base_loc = os.path.join(self.temp_extracted_loc, "spider") database_loc = os.path.join(base_loc, "database") split_file_loc = os.path.join( base_loc, {"test": "dev.json", "train": "train_spider.json"}[split] ) with open(split_file_loc, encoding="utf-8") as split_file: raw_data = [ typing.cast( SpiderCoreSpec, { **i, "conn_str": f"sqlite:///{database_loc}/{i['db_id']}/\ {i['db_id']}.sqlite", }, ) for i in json.load(split_file) if (i["db_id"] not in self.promblematic_databases.get("errors", [])) and ( (not strict) or ( i["db_id"] not in self.promblematic_databases.get("warnings", []) ) ) ] return raw_data def dataset(self, **kwargs) -> Dataset: """ Creates and returns a Dataset object based on the specified Spider split """ return Dataset.from_connection_strings( name_connstr_map=dict( { (i["db_id"], i["conn_str"]) for i in self.fetch_raw_data( split=kwargs["split"], strict=kwargs.get("strict", False) ) } ), **kwargs, )