batch/create/create_gpu_job.js (64 lines of code) (raw):
/*
* Copyright 2024 Google LLC
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
'use strict';
async function main() {
// [START batch_create_gpu_job]
// Imports the Batch library
const batchLib = require('@google-cloud/batch');
const batch = batchLib.protos.google.cloud.batch.v1;
// Instantiates a client
const batchClient = new batchLib.v1.BatchServiceClient();
/**
* TODO(developer): Update these variables before running the sample.
*/
// Project ID or project number of the Google Cloud project you want to use.
const projectId = await batchClient.getProjectId();
// Name of the region you want to use to run the job. Regions that are
// available for Batch are listed on: https://cloud.google.com/batch/docs/get-started#locations
const region = 'europe-central2';
// The name of the job that will be created.
// It needs to be unique for each project and region pair.
const jobName = 'batch-gpu-job';
// The GPU type. You can view a list of the available GPU types
// by using the `gcloud compute accelerator-types list` command.
const gpuType = 'nvidia-l4';
// The number of GPUs of the specified type.
const gpuCount = 1;
// Optional. When set to true, Batch fetches the drivers required for the GPU type
// that you specify in the policy field from a third-party location,
// and Batch installs them on your behalf. If you set this field to false (default),
// you need to install GPU drivers manually to use any GPUs for this job.
const installGpuDrivers = false;
// Accelerator-optimized machine types are available to Batch jobs. See the list
// of available types on: https://cloud.google.com/compute/docs/accelerator-optimized-machines
const machineType = 'g2-standard-4';
// Define what will be done as part of the job.
const runnable = new batch.Runnable({
script: new batch.Runnable.Script({
commands: ['-c', 'echo Hello world! This is task ${BATCH_TASK_INDEX}.'],
}),
});
const task = new batch.TaskSpec({
runnables: [runnable],
maxRetryCount: 2,
maxRunDuration: {seconds: 3600},
});
// Tasks are grouped inside a job using TaskGroups.
const group = new batch.TaskGroup({
taskCount: 3,
taskSpec: task,
});
// Policies are used to define on what kind of virtual machines the tasks will run on.
// In this case, we tell the system to use "g2-standard-4" machine type.
// Read more about machine types here: https://cloud.google.com/compute/docs/machine-types
const instancePolicy = new batch.AllocationPolicy.InstancePolicy({
machineType,
// Accelerator describes Compute Engine accelerators to be attached to the VM
accelerators: [
new batch.AllocationPolicy.Accelerator({
type: gpuType,
count: gpuCount,
installGpuDrivers,
}),
],
});
const allocationPolicy = new batch.AllocationPolicy.InstancePolicyOrTemplate({
instances: [{installGpuDrivers, policy: instancePolicy}],
});
const job = new batch.Job({
name: jobName,
taskGroups: [group],
labels: {env: 'testing', type: 'script'},
allocationPolicy,
// We use Cloud Logging as it's an option available out of the box
logsPolicy: new batch.LogsPolicy({
destination: batch.LogsPolicy.Destination.CLOUD_LOGGING,
}),
});
// The job's parent is the project and region in which the job will run
const parent = `projects/${projectId}/locations/${region}`;
async function callCreateBatchGPUJob() {
// Construct request
const request = {
parent,
jobId: jobName,
job,
};
// Run request
const [response] = await batchClient.createJob(request);
console.log(JSON.stringify(response));
}
await callCreateBatchGPUJob();
// [END batch_create_gpu_job]
}
main().catch(err => {
console.error(err.message);
process.exitCode = 1;
});