A temporal dependency occurs when developers change two or more files at the same time (i.e. they are a part of the same commit).
No file pairs changed together.
No temporal dependencies found.
No temporal dependencies found.
No file pairs changed together.
No temporal dependencies found.
No temporal dependencies found.
Pairs | # same commits | # commits 1 | # commits 2 | latest commit |
---|---|---|---|---|
07_training/07d_distribute.ipynb 07_training/07a_ingest.ipynb |
2 | 6 (33%) | 8 (25%) | 2025-01-15 |
09_deploying/09b_rest.ipynb 07_training/07d_distribute.ipynb |
2 | 7 (28%) | 6 (33%) | 2025-01-15 |
05_create_dataset/05_split_tfrecord.ipynb 03_image_models/flowers.py |
2 | 7 (28%) | 3 (66%) | 2025-01-15 |
09_deploying/09b_rest.ipynb 03_image_models/flowers.py |
2 | 7 (28%) | 3 (66%) | 2025-01-15 |
05_create_dataset/05_label_images.ipynb 03_image_models/flowers.py |
2 | 5 (40%) | 3 (66%) | 2025-01-15 |
07_training/serverlessml/flowers/classifier/train.py 07_training/07a_ingest.ipynb |
2 | 4 (50%) | 8 (25%) | 2025-01-15 |
09_deploying/09b_rest.ipynb 05_create_dataset/05_label_images.ipynb |
2 | 7 (28%) | 5 (40%) | 2025-01-15 |
09_deploying/09d_bytes.ipynb 07_training/07a_ingest.ipynb |
2 | 6 (33%) | 8 (25%) | 2025-01-15 |
10_mlops/10a_mlpipeline.ipynb 09_deploying/09d_bytes.ipynb |
2 | 6 (33%) | 6 (33%) | 2025-01-15 |
10_mlops/10a_mlpipeline.ipynb 07_training/07a_ingest.ipynb |
2 | 6 (33%) | 8 (25%) | 2025-01-15 |
09_deploying/09d_bytes.ipynb 09_deploying/09b_rest.ipynb |
2 | 6 (33%) | 7 (28%) | 2025-01-15 |
07_training/serverlessml/flowers/classifier/train.py 07_training/07d_distribute.ipynb |
2 | 4 (50%) | 6 (33%) | 2025-01-15 |
10_mlops/10a_mlpipeline.ipynb 07_training/07d_distribute.ipynb |
2 | 6 (33%) | 6 (33%) | 2025-01-15 |
09_deploying/09d_bytes.ipynb 05_create_dataset/05_label_images.ipynb |
2 | 6 (33%) | 5 (40%) | 2025-01-15 |
09_deploying/09e_tflite.ipynb 07_training/serverlessml/flowers/classifier/train.py |
2 | 3 (66%) | 4 (50%) | 2025-01-15 |
10_mlops/10a_mlpipeline.ipynb 05_create_dataset/05_split_tfrecord.ipynb |
2 | 6 (33%) | 7 (28%) | 2025-01-15 |
09_deploying/09b_rest.ipynb 07_training/serverlessml/flowers/classifier/train.py |
2 | 7 (28%) | 4 (50%) | 2025-01-15 |
10_mlops/10a_mlpipeline.ipynb 05_create_dataset/05_label_images.ipynb |
2 | 6 (33%) | 5 (40%) | 2025-01-15 |
07_training/07d_distribute.ipynb 05_create_dataset/05_label_images.ipynb |
2 | 6 (33%) | 5 (40%) | 2025-01-15 |
09_deploying/09d_bytes.ipynb 07_training/serverlessml/flowers/classifier/train.py |
2 | 6 (33%) | 4 (50%) | 2025-01-15 |
09_deploying/09e_tflite.ipynb 05_create_dataset/05_label_images.ipynb |
2 | 3 (66%) | 5 (40%) | 2025-01-15 |
10_mlops/10a_mlpipeline.ipynb 07_training/serverlessml/flowers/classifier/train.py |
2 | 6 (33%) | 4 (50%) | 2025-01-15 |
09_deploying/09e_tflite.ipynb 09_deploying/09d_bytes.ipynb |
2 | 3 (66%) | 6 (33%) | 2025-01-15 |
07_training/07a_ingest.ipynb 05_create_dataset/05_split_tfrecord.ipynb |
2 | 8 (25%) | 7 (28%) | 2025-01-15 |
07_training/07a_ingest.ipynb 03_image_models/flowers.py |
2 | 8 (25%) | 3 (66%) | 2025-01-15 |
09_deploying/09e_tflite.ipynb 07_training/07a_ingest.ipynb |
2 | 3 (66%) | 8 (25%) | 2025-01-15 |
07_training/07d_distribute.ipynb 05_create_dataset/05_split_tfrecord.ipynb |
2 | 6 (33%) | 7 (28%) | 2025-01-15 |
09_deploying/09b_rest.ipynb 05_create_dataset/05_split_tfrecord.ipynb |
2 | 7 (28%) | 7 (28%) | 2025-01-15 |
09_deploying/09e_tflite.ipynb 07_training/07d_distribute.ipynb |
2 | 3 (66%) | 6 (33%) | 2025-01-15 |
09_deploying/09d_bytes.ipynb 05_create_dataset/05_split_tfrecord.ipynb |
2 | 6 (33%) | 7 (28%) | 2025-01-15 |
10_mlops/10a_mlpipeline.ipynb 09_deploying/09e_tflite.ipynb |
2 | 6 (33%) | 3 (66%) | 2025-01-15 |
09_deploying/09e_tflite.ipynb 09_deploying/09b_rest.ipynb |
2 | 3 (66%) | 7 (28%) | 2025-01-15 |
10_mlops/10a_mlpipeline.ipynb 09_deploying/09b_rest.ipynb |
2 | 6 (33%) | 7 (28%) | 2025-01-15 |
05_create_dataset/05_split_tfrecord.ipynb 05_create_dataset/05_label_images.ipynb |
2 | 7 (28%) | 5 (40%) | 2025-01-15 |
07_training/07d_distribute.ipynb 03_image_models/flowers.py |
2 | 6 (33%) | 3 (66%) | 2025-01-15 |
07_training/serverlessml/flowers/classifier/train.py 05_create_dataset/05_split_tfrecord.ipynb |
2 | 4 (50%) | 7 (28%) | 2025-01-15 |
09_deploying/09e_tflite.ipynb 03_image_models/flowers.py |
2 | 3 (66%) | 3 (66%) | 2025-01-15 |
07_training/07a_ingest.ipynb 05_create_dataset/05_label_images.ipynb |
2 | 8 (25%) | 5 (40%) | 2025-01-15 |
07_training/serverlessml/flowers/classifier/train.py 03_image_models/flowers.py |
2 | 4 (50%) | 3 (66%) | 2025-01-15 |
09_deploying/09e_tflite.ipynb 05_create_dataset/05_split_tfrecord.ipynb |
2 | 3 (66%) | 7 (28%) | 2025-01-15 |
07_training/serverlessml/flowers/classifier/train.py 05_create_dataset/05_label_images.ipynb |
2 | 4 (50%) | 5 (40%) | 2025-01-15 |
10_mlops/10a_mlpipeline.ipynb 03_image_models/flowers.py |
2 | 6 (33%) | 3 (66%) | 2025-01-15 |
09_deploying/09b_rest.ipynb 07_training/07a_ingest.ipynb |
2 | 7 (28%) | 8 (25%) | 2025-01-15 |
09_deploying/09d_bytes.ipynb 07_training/07d_distribute.ipynb |
2 | 6 (33%) | 6 (33%) | 2025-01-15 |
09_deploying/09d_bytes.ipynb 03_image_models/flowers.py |
2 | 6 (33%) | 3 (66%) | 2025-01-15 |