03_image_models/flowers.py (132 lines of code) (raw):
import math, re, os, sys
import tensorflow as tf
import numpy as np
from sklearn.metrics import f1_score, precision_score, recall_score, confusion_matrix
print("Tensorflow version " + tf.__version__)
AUTO = tf.data.experimental.AUTOTUNE
try: # detect TPUs
tpu = tf.distribute.cluster_resolver.TPUClusterResolver.connect()
strategy = tf.distribute.TPUStrategy(tpu)
except ValueError: # detect GPUs or multi-GPU machines
strategy = tf.distribute.MirroredStrategy()
print("REPLICAS: ", strategy.num_replicas_in_sync)
GCS_DS_PATH = "gs://practical-ml-vision-book-data/flowers_104_tfr"
# Settings for TPUv3. When running on hardware with less memory such as a TPUv2 (Colab)
# or a GPU, you might have to use lower BATCH_SIZE and/or IMAGE_SIZE values.
IMAGE_SIZE = [512, 512] # available image sizes in flowers104 dataset: 512x512, 331x331, 224x224, 192,192
BATCH_SIZE = 32 * strategy.num_replicas_in_sync
EPOCHS = 13
# Learning rate schedule
LR_START = 0.00001
LR_MAX = 0.0001 * strategy.num_replicas_in_sync
LR_MIN = 0.00001
LR_RAMPUP_EPOCHS = 3
LR_SUSTAIN_EPOCHS = 3
LR_EXP_DECAY = .5
GCS_PATH_SELECT = { # available image sizes
192: GCS_DS_PATH + '/tfrecords-jpeg-192x192',
224: GCS_DS_PATH + '/tfrecords-jpeg-224x224',
331: GCS_DS_PATH + '/tfrecords-jpeg-331x331',
512: GCS_DS_PATH + '/tfrecords-jpeg-512x512'
}
GCS_PATH = GCS_PATH_SELECT[IMAGE_SIZE[0]]
# This dataset is split three ways, training, validation, test
# but we will use it split two ways only: training and validation.
TRAINING_FILENAMES = tf.io.gfile.glob(GCS_PATH + '/train/*.tfrec') + tf.io.gfile.glob(GCS_PATH + '/val/*.tfrec')
VALIDATION_FILENAMES = tf.io.gfile.glob(GCS_PATH + '/test/*.tfrec')
CLASSES = ['pink primrose', 'hard-leaved pocket orchid', 'canterbury bells', 'sweet pea', 'wild geranium', 'tiger lily', 'moon orchid', 'bird of paradise', 'monkshood', 'globe thistle', # 00 - 09
'snapdragon', "colt's foot", 'king protea', 'spear thistle', 'yellow iris', 'globe-flower', 'purple coneflower', 'peruvian lily', 'balloon flower', 'giant white arum lily', # 10 - 19
'fire lily', 'pincushion flower', 'fritillary', 'red ginger', 'grape hyacinth', 'corn poppy', 'prince of wales feathers', 'stemless gentian', 'artichoke', 'sweet william', # 20 - 29
'carnation', 'garden phlox', 'love in the mist', 'cosmos', 'alpine sea holly', 'ruby-lipped cattleya', 'cape flower', 'great masterwort', 'siam tulip', 'lenten rose', # 30 - 39
'barberton daisy', 'daffodil', 'sword lily', 'poinsettia', 'bolero deep blue', 'wallflower', 'marigold', 'buttercup', 'daisy', 'common dandelion', # 40 - 49
'petunia', 'wild pansy', 'primula', 'sunflower', 'lilac hibiscus', 'bishop of llandaff', 'gaura', 'geranium', 'orange dahlia', 'pink-yellow dahlia', # 50 - 59
'cautleya spicata', 'japanese anemone', 'black-eyed susan', 'silverbush', 'californian poppy', 'osteospermum', 'spring crocus', 'iris', 'windflower', 'tree poppy', # 60 - 69
'gazania', 'azalea', 'water lily', 'rose', 'thorn apple', 'morning glory', 'passion flower', 'lotus', 'toad lily', 'anthurium', # 70 - 79
'frangipani', 'clematis', 'hibiscus', 'columbine', 'desert-rose', 'tree mallow', 'magnolia', 'cyclamen ', 'watercress', 'canna lily', # 80 - 89
'hippeastrum ', 'bee balm', 'pink quill', 'foxglove', 'bougainvillea', 'camellia', 'mallow', 'mexican petunia', 'bromelia', 'blanket flower', # 90 - 99
'trumpet creeper', 'blackberry lily', 'common tulip', 'wild rose'] # 100 - 102
def lrfn(epoch):
if epoch < LR_RAMPUP_EPOCHS:
lr = (LR_MAX - LR_START) / LR_RAMPUP_EPOCHS * epoch + LR_START
elif epoch < LR_RAMPUP_EPOCHS + LR_SUSTAIN_EPOCHS:
lr = LR_MAX
else:
lr = (LR_MAX - LR_MIN) * LR_EXP_DECAY**(epoch - LR_RAMPUP_EPOCHS - LR_SUSTAIN_EPOCHS) + LR_MIN
return lr
lr_callback = tf.keras.callbacks.LearningRateScheduler(lrfn, verbose=True)
# DATASET
def decode_image(image_data):
image = tf.image.decode_jpeg(image_data, channels=3) # decoded inamge in uint8 format range [0,255]
image = tf.reshape(image, [*IMAGE_SIZE, 3]) # explicit size needed for TPU
return image
def read_tfrecord(example):
TFREC_FORMAT = {
"image": tf.io.FixedLenFeature([], tf.string), # tf.string means bytestring
"class": tf.io.FixedLenFeature([], tf.int64), # shape [] means single element
"id": tf.io.FixedLenFeature([], tf.string), # shape [] means single element
}
example = tf.io.parse_single_example(example, TFREC_FORMAT)
image = decode_image(example['image'])
label = tf.cast(example['class'], tf.int32)
idnum = example['id'] # image id, not used
return image, label # returns a dataset of (image, label) pairs
def load_dataset(filenames, ordered=False):
# Read from TFRecords. For optimal performance, reading from multiple files at once and
# disregarding data order. Order does not matter since we will be shuffling the data anyway.
ignore_order = tf.data.Options()
if not ordered:
ignore_order.experimental_deterministic = False # disable order, increase speed
dataset = tf.data.TFRecordDataset(filenames, num_parallel_reads=AUTO) # automatically interleaves reads from multiple files
dataset = dataset.with_options(ignore_order) # uses data as soon as it streams in, rather than in its original order
dataset = dataset.map(read_tfrecord, num_parallel_calls=AUTO)
# returns a dataset of (image, label) pairs
return dataset
def data_augment(image, label):
# data augmentation. Thanks to the dataset.prefetch(AUTO) statement in the next function (below),
# this happens essentially for free on TPU. Data pipeline code is executed on the "CPU" part
# of the TPU while the TPU itself is computing gradients.
image = tf.image.random_flip_left_right(image)
#image = tf.image.random_saturation(image, 0, 2)
return image, label
def get_training_dataset():
dataset = load_dataset(TRAINING_FILENAMES)
dataset = dataset.map(data_augment, num_parallel_calls=AUTO)
dataset = dataset.repeat() # the training dataset must repeat for several epochs
dataset = dataset.shuffle(2048)
dataset = dataset.batch(BATCH_SIZE)
dataset = dataset.prefetch(AUTO) # prefetch next batch while training (autotune prefetch buffer size)
return dataset
def get_validation_dataset(ordered=False):
dataset = load_dataset(VALIDATION_FILENAMES, ordered=ordered)
dataset = dataset.batch(BATCH_SIZE)
dataset = dataset.cache()
dataset = dataset.prefetch(AUTO) # prefetch next batch while training (autotune prefetch buffer size)
return dataset
def count_data_items(filenames):
# the number of data items is written in the name of the .tfrec files, i.e. flowers00-230.tfrec = 230 data items
n = [int(re.compile(r"-([0-9]*)\.").search(filename).group(1)) for filename in filenames]
return np.sum(n)
NUM_TRAINING_IMAGES = count_data_items(TRAINING_FILENAMES)
NUM_VALIDATION_IMAGES = count_data_items(VALIDATION_FILENAMES)
STEPS_PER_EPOCH = NUM_TRAINING_IMAGES // BATCH_SIZE
VALIDATION_STEPS = -(-NUM_VALIDATION_IMAGES // BATCH_SIZE) # The "-(-//)" trick rounds up instead of down :-)
print('Dataset: {} training images, {} validation images'.format(NUM_TRAINING_IMAGES, NUM_VALIDATION_IMAGES))
# MODEL
with strategy.scope():
pretrained_model = tf.keras.applications.Xception(weights='imagenet', include_top=False)
#pretrained_model = efficientnet.tfkeras.EfficientNetB7(weights='imagenet', include_top=False, input_shape=[*IMAGE_SIZE, 3])
pretrained_model.trainable = True # fine-tuning
model = tf.keras.Sequential([
# convert image format from int [0,255] to the format expected by this model
tf.keras.layers.Lambda(lambda data: tf.keras.applications.xception.preprocess_input(tf.cast(data, tf.float32)), input_shape=[*IMAGE_SIZE, 3]),
pretrained_model,
tf.keras.layers.GlobalAveragePooling2D(),
tf.keras.layers.Dense(len(CLASSES), activation='softmax', name='flower_prob')
])
model.compile(
optimizer='adam',
loss = 'sparse_categorical_crossentropy',
metrics=['sparse_categorical_accuracy'],
steps_per_execution=8
)
model.summary()
# TRAINING
history = model.fit(get_training_dataset(), steps_per_epoch=STEPS_PER_EPOCH, epochs=EPOCHS,
validation_data=get_validation_dataset(), validation_steps=VALIDATION_STEPS,
callbacks=[lr_callback])
# CONFUSION MATRIX
cmdataset = get_validation_dataset(ordered=True) # since we are splitting the dataset and iterating separately on images and labels, order matters.
images_ds = cmdataset.map(lambda image, label: image)
labels_ds = cmdataset.map(lambda image, label: label).unbatch()
cm_correct_labels = next(iter(labels_ds.batch(NUM_VALIDATION_IMAGES))).numpy() # get everything as one batch
cm_probabilities = model.predict(images_ds, steps=VALIDATION_STEPS)
cm_predictions = np.argmax(cm_probabilities, axis=-1)
print("Correct labels: ", cm_correct_labels.shape, cm_correct_labels)
print("Predicted labels: ", cm_predictions.shape, cm_predictions)
cmat = confusion_matrix(cm_correct_labels, cm_predictions, labels=range(len(CLASSES)))
score = f1_score(cm_correct_labels, cm_predictions, labels=range(len(CLASSES)), average='macro')
precision = precision_score(cm_correct_labels, cm_predictions, labels=range(len(CLASSES)), average='macro')
recall = recall_score(cm_correct_labels, cm_predictions, labels=range(len(CLASSES)), average='macro')
cmat = (cmat.T / cmat.sum(axis=1)).T # normalized
print('f1 score: {:.3f}, precision: {:.3f}, recall: {:.3f}'.format(score, precision, recall))