06_preprocessing/jpeg_to_tfrecord_tft.py (187 lines of code) (raw):
#!/usr/bin/env python3
# Copyright 2020 Google Inc. Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License. You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES
# OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
# specific language governing permissions and limitations under the License.
r"""
Apache Beam pipeline to create TFRecord files from JPEG files stored on GCS.
This pipeline will split the data 80:10:10,
convert the images to lie in [-1, 1] range and resize them.
Modify the constants and TF Record format as needed.
Example usage:
python3 -m jpeg_to_tfrecord_tft \
--all_data gs://cloud-ml-data/img/flower_photos/all_data.csv \
--labels_file gs://cloud-ml-data/img/flower_photos/dict.txt \
--project_id $PROJECT \
--output_dir gs://${BUCKET}/data/flower_tfrecords \
--resize 448,448
The format of the CSV files is:
URL-of-image,label
And the format of the labels_file is simply a list of strings one-per-line.
"""
import argparse
import datetime
import os
import shutil
import subprocess
import sys
import tempfile
import apache_beam as beam
import tensorflow as tf
import numpy as np
import tensorflow_transform as tft
import tensorflow_transform.beam as tft_beam
from tfx_bsl.public import tfxio
IMG_HEIGHT, IMG_WIDTH, IMG_CHANNELS = 448, 448, 3
LABELS = []
def _string_feature(value):
return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value.encode('utf-8')]))
def _int64_feature(value):
return tf.train.Feature(int64_list=tf.train.Int64List(value=value))
def _float_feature(value):
return tf.train.Feature(float_list=tf.train.FloatList(value=value))
def decode_image(img_bytes):
IMG_CHANNELS = 3
return tf.image.decode_jpeg(img_bytes, channels=IMG_CHANNELS)
def assign_record_to_split(rec):
rnd = np.random.rand()
if rnd < 0.8:
return ('train', rec)
if rnd < 0.9:
return ('valid', rec)
return ('test', rec)
def yield_records_for_split(x, desired_split):
split, rec = x
# print(split, desired_split, split == desired_split)
if split == desired_split:
yield rec
def write_records(OUTPUT_DIR, splits, split):
# same 80:10:10 split
# The flowers dataset takes about 1GB, so 20 files means 50MB each
nshards = 16 if (split == 'train') else 2
_ = (splits
| 'only_{}'.format(split) >> beam.FlatMap(
lambda x: yield_records_for_split(x, split))
| 'write_{}'.format(split) >> beam.io.tfrecordio.WriteToTFRecord(
os.path.join(OUTPUT_DIR, split),
file_name_suffix='.gz', num_shards=nshards)
)
def decode_image(img_bytes):
img = tf.image.decode_jpeg(img_bytes, channels=IMG_CHANNELS)
return img
def tft_preprocess(img_record):
# tft_preprocess gets a batch, but decode_jpeg can only read individual files
img = tf.map_fn(decode_image, img_record['img_bytes'],
fn_output_signature=tf.float32)
img = tf.image.convert_image_dtype(img, tf.float32) # [0,1]
img = tf.image.resize_with_pad(img, IMG_HEIGHT, IMG_WIDTH)
return {
'image': img,
'label': img_record['label'],
'label_int': img_record['label_int']
}
def create_input_record(filename, label):
label_list = label.to_pylist()
filename_list = filename.to_pylist()
assert len(filename_list) == 1 and len(filename_list[0]) == 1
assert len(label_list) == 1 and len(label_list[0]) == 1
contents = tf.io.read_file(filename_list[0][0]).numpy()
return {
'img_bytes': contents,
'label': label_list[0][0],
'label_int': LABELS.index(label_list[0][0].decode())
}
def run_main(arguments):
global IMG_HEIGHT, IMG_WIDTH, IMG_CHANNELS, LABELS
JOBNAME = (
'preprocess-images-' + datetime.datetime.now().strftime('%y%m%d-%H%M%S'))
PROJECT = arguments['project_id']
OUTPUT_DIR = arguments['output_dir']
# set RUNNER using command-line arg or based on output_dir path
on_cloud = OUTPUT_DIR.startswith('gs://')
if arguments['runner']:
RUNNER = arguments['runner']
on_cloud = (RUNNER == 'DataflowRunner')
else:
RUNNER = 'DataflowRunner' if on_cloud else 'DirectRunner'
# clean-up output directory since Beam will name files 0000-of-0004 etc.
# and this could cause confusion if earlier run has 0000-of-0005, for eg
if on_cloud:
try:
subprocess.check_call('gsutil -m rm -r {}'.format(OUTPUT_DIR).split())
except subprocess.CalledProcessError:
pass
else:
shutil.rmtree(OUTPUT_DIR, ignore_errors=True)
os.makedirs(OUTPUT_DIR)
# tf.config.run_functions_eagerly(not on_cloud)
# read list of labels
with tf.io.gfile.GFile(arguments['labels_file'], 'r') as f:
LABELS = [line.rstrip() for line in f]
print('Read in {} labels, from {} to {}'.format(
len(LABELS), LABELS[0], LABELS[-1]))
if len(LABELS) < 2:
print('Require at least two labels')
sys.exit(-1)
# resize the input images
ht, wd = arguments['resize'].split(',')
IMG_HEIGHT = int(ht)
IMG_WIDTH = int(wd)
print("Will resize input images to {}x{}".format(IMG_HEIGHT, IMG_WIDTH))
# make it repeatable
np.random.seed(10)
# set up Beam pipeline to convert images to TF Records
options = {
'staging_location': os.path.join(OUTPUT_DIR, 'tmp', 'staging'),
'temp_location': os.path.join(OUTPUT_DIR, 'tmp'),
'job_name': JOBNAME,
'project': PROJECT,
'max_num_workers': 20, # autoscale up to 20
'region': arguments['region'],
'teardown_policy': 'TEARDOWN_ALWAYS',
'save_main_session': True,
'requirements_file': 'requirements.txt'
}
opts = beam.pipeline.PipelineOptions(flags=[], **options)
RAW_DATA_SCHEMA = tft.tf_metadata.dataset_schema.schema_utils.schema_from_feature_spec({
'filename': tf.io.FixedLenFeature([], tf.string),
'label': tf.io.FixedLenFeature([], tf.string),
})
IMG_BYTES_METADATA = tft.tf_metadata.dataset_metadata.DatasetMetadata(
tft.tf_metadata.dataset_schema.schema_utils.schema_from_feature_spec({
'img_bytes': tf.io.FixedLenFeature([], tf.string),
'label': tf.io.FixedLenFeature([], tf.string),
'label_int': tf.io.FixedLenFeature([], tf.int64)
})
)
csv_tfxio = tfxio.CsvTFXIO(file_pattern=arguments['all_data'],
column_names=['filename', 'label'],
schema=RAW_DATA_SCHEMA,
telemetry_descriptors=['standalone_tft'])
with beam.Pipeline(RUNNER, options=opts) as p:
with tft_beam.Context(temp_dir=os.path.join(OUTPUT_DIR, 'tmp', 'beam_context')):
img_records = (p
| 'read_csv' >> csv_tfxio.BeamSource(batch_size=1)
| 'img_record' >> beam.Map(
lambda x: create_input_record(x[0], x[1])))
# tf.transform preprocessing
# note that our preprocessing is simply to resize the images
# so there is no need to be careful to run analysis only on training data
# Ideally, we could have done csv_tfxio.TensorAdapterConfig()
# but here, we are processing bytes, not the filenames we read from CSV
raw_dataset = (img_records, IMG_BYTES_METADATA)
transformed_dataset, transform_fn = (
raw_dataset | 'tft_img' >> tft_beam.AnalyzeAndTransformDataset(tft_preprocess)
)
transformed_data, transformed_metadata = transformed_dataset
transformed_data_coder = tft.coders.ExampleProtoCoder(transformed_metadata.schema)
# write the cropped images
splits = (transformed_data
| 'create_tfr' >> beam.Map(transformed_data_coder.encode)
| 'assign_ds' >> beam.Map(assign_record_to_split)
)
for split in ['train', 'valid', 'test']:
write_records(OUTPUT_DIR, splits, split)
# make sure to write out a SavedModel with the tf transforms that were carried out
_ = (
transform_fn | 'write_tft' >> tft_beam.WriteTransformFn(
os.path.join(OUTPUT_DIR, 'tft'))
)
if on_cloud:
print("Submitting {} job: {}".format(RUNNER, JOBNAME))
print("Monitor at https://console.cloud.google.com/dataflow/jobs")
else:
print("Running on DirectRunner. Please hold on ...")
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument(
'--all_data',
# pylint: disable=line-too-long
help=
'Path to input. Each line of input has two fields image-file-name and label separated by a comma',
required=True)
parser.add_argument(
'--labels_file',
help='Path to file containing list of labels, one per line',
required=True)
parser.add_argument(
'--project_id',
help='ID (not name) of your project. Ignored by DirectRunner',
required=True)
parser.add_argument(
'--runner',
help='If omitted, uses DataFlowRunner if output_dir starts with gs://',
default=None)
parser.add_argument(
'--region',
help='Cloud Region to run in. Ignored for DirectRunner',
default='us-central1')
parser.add_argument(
'--resize',
help='Specify the img_height,img_width that you want images resized.',
default='448,448')
parser.add_argument(
'--output_dir', help='Top-level directory for TF Records', required=True)
args = parser.parse_args()
arguments = args.__dict__
run_main(arguments)