07_training/serverlessml/hparam.yaml (56 lines of code) (raw):
displayName: "FlowersHpTuningJob"
maxTrialCount: 50
parallelTrialCount: 2
studySpec:
metrics:
- metricId: accuracy
goal: MAXIMIZE
parameters:
- parameterId: l2
scaleType: UNIT_LINEAR_SCALE
doubleValueSpec:
minValue: 0
maxValue: 0.2
- parameterId: batch_size
scaleType: SCALE_TYPE_UNSPECIFIED
discreteValueSpec:
values:
- 16
- 32
- 64
- parameterId: num_hidden
scaleType: SCALE_TYPE_UNSPECIFIED
discreteValueSpec:
values:
- 8
- 16
- 24
- parameterId: with_color_distort
scaleType: SCALE_TYPE_UNSPECIFIED
discreteValueSpec:
values:
- False
- True
- parameterId: crop_ratio
scaleType: UNIT_LINEAR_SCALE
doubleValueSpec:
minValue: 0.5
maxValue: 0.8
algorithm: ALGORITHM_UNSPECIFIED
trialJobSpec:
baseOutputDirectory:
outputUriPrefix: gs://{BUCKET}/flowers_trained/hptune # TODO: Add your bucket!
workerPoolSpecs:
- machineSpec:
machineType: n1-standard-4
acceleratorType: NVIDIA_TESLA_T4
acceleratorCount: 2
replicaCount: 1
pythonPackageSpec:
executorImageUri: us-docker.pkg.dev/vertex-ai/training/tf-cpu.2-4:latest
packageUris: gs://{BUCKET}/flowers-1.0.tar.gz # TODO: Add your bucket!
pythonModule: flowers.classifier.train
args:
- --pattern="-*"
- --num_epochs=20
- --distribute="cpu"