07_training/serverlessml/hparam.yaml (56 lines of code) (raw):

displayName: "FlowersHpTuningJob" maxTrialCount: 50 parallelTrialCount: 2 studySpec: metrics: - metricId: accuracy goal: MAXIMIZE parameters: - parameterId: l2 scaleType: UNIT_LINEAR_SCALE doubleValueSpec: minValue: 0 maxValue: 0.2 - parameterId: batch_size scaleType: SCALE_TYPE_UNSPECIFIED discreteValueSpec: values: - 16 - 32 - 64 - parameterId: num_hidden scaleType: SCALE_TYPE_UNSPECIFIED discreteValueSpec: values: - 8 - 16 - 24 - parameterId: with_color_distort scaleType: SCALE_TYPE_UNSPECIFIED discreteValueSpec: values: - False - True - parameterId: crop_ratio scaleType: UNIT_LINEAR_SCALE doubleValueSpec: minValue: 0.5 maxValue: 0.8 algorithm: ALGORITHM_UNSPECIFIED trialJobSpec: baseOutputDirectory: outputUriPrefix: gs://{BUCKET}/flowers_trained/hptune # TODO: Add your bucket! workerPoolSpecs: - machineSpec: machineType: n1-standard-4 acceleratorType: NVIDIA_TESLA_T4 acceleratorCount: 2 replicaCount: 1 pythonPackageSpec: executorImageUri: us-docker.pkg.dev/vertex-ai/training/tf-cpu.2-4:latest packageUris: gs://{BUCKET}/flowers-1.0.tar.gz # TODO: Add your bucket! pythonModule: flowers.classifier.train args: - --pattern="-*" - --num_epochs=20 - --distribute="cpu"