appengine/standard/search/snippets/snippets.py (182 lines of code) (raw):

# Copyright 2016 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from datetime import datetime from google.appengine.api import search def simple_search(index): index.search("rose water") def search_date(index): index.search("1776-07-04") def search_terms(index): # search for documents with pianos that cost less than $5000 index.search("product = piano AND price < 5000") def create_document(): document = search.Document( # Setting the doc_id is optional. If omitted, the search service will # create an identifier. doc_id="PA6-5000", fields=[ search.TextField(name="customer", value="Joe Jackson"), search.HtmlField(name="comment", value="this is <em>marked up</em> text"), search.NumberField(name="number_of_visits", value=7), search.DateField(name="last_visit", value=datetime.now()), search.DateField( name="birthday", value=datetime(year=1960, month=6, day=19) ), search.GeoField( name="home_location", value=search.GeoPoint(37.619, -122.37) ), ], ) return document def add_document_to_index(document): index = search.Index("products") index.put(document) def add_document_and_get_doc_id(documents): index = search.Index("products") results = index.put(documents) document_ids = [document.id for document in results] return document_ids def get_document_by_id(): index = search.Index("products") # Get a single document by ID. document = index.get("AZ125") # Get a range of documents starting with a given ID. documents = index.get_range(start_id="AZ125", limit=100) return document, documents def query_index(): index = search.Index("products") query_string = "product: piano AND price < 5000" results = index.search(query_string) for scored_document in results: print(scored_document) def delete_all_in_index(index): # index.get_range by returns up to 100 documents at a time, so we must # loop until we've deleted all items. while True: # Use ids_only to get the list of document IDs in the index without # the overhead of getting the entire document. document_ids = [document.doc_id for document in index.get_range(ids_only=True)] # If no IDs were returned, we've deleted everything. if not document_ids: break # Delete the documents for the given IDs index.delete(document_ids) def async_query(index): futures = [index.search_async("foo"), index.search_async("bar")] results = [future.get_result() for future in futures] return results def query_options(): index = search.Index("products") query_string = "product: piano AND price < 5000" # Create sort options to sort on price and brand. sort_price = search.SortExpression( expression="price", direction=search.SortExpression.DESCENDING, default_value=0 ) sort_brand = search.SortExpression( expression="brand", direction=search.SortExpression.DESCENDING, default_value="" ) sort_options = search.SortOptions(expressions=[sort_price, sort_brand]) # Create field expressions to add new fields to the scored documents. price_per_note_expression = search.FieldExpression( name="price_per_note", expression="price/88" ) ivory_expression = search.FieldExpression( name="ivory", expression='snippet("ivory", summary, 120)' ) # Create query options using the sort options and expressions created # above. query_options = search.QueryOptions( limit=25, returned_fields=["model", "price", "description"], returned_expressions=[price_per_note_expression, ivory_expression], sort_options=sort_options, ) # Build the Query and run the search query = search.Query(query_string=query_string, options=query_options) results = index.search(query) for scored_document in results: print(scored_document) def query_results(index, query_string): result = index.search(query_string) total_matches = result.number_found list_of_docs = result.results number_of_docs_returned = len(list_of_docs) return total_matches, list_of_docs, number_of_docs_returned def query_offset(index, query_string): offset = 0 while True: # Build the query using the current offset. options = search.QueryOptions(offset=offset) query = search.Query(query_string=query_string, options=options) # Get the results results = index.search(query) number_retrieved = len(results.results) if number_retrieved == 0: break # Add the number of documents found to the offset, so that the next # iteration will grab the next page of documents. offset += number_retrieved # Process the matched documents for document in results: print(document) def query_cursor(index, query_string): cursor = search.Cursor() while cursor: # Build the query using the cursor. options = search.QueryOptions(cursor=cursor) query = search.Query(query_string=query_string, options=options) # Get the results and the next cursor results = index.search(query) cursor = results.cursor for document in results: print(document) def query_per_document_cursor(index, query_string): cursor = search.Cursor(per_result=True) # Build the query using the cursor. options = search.QueryOptions(cursor=cursor) query = search.Query(query_string=query_string, options=options) # Get the results. results = index.search(query) document_cursor = None for document in results: # discover some document of interest and grab its cursor, for this # sample we'll just use the first document. document_cursor = document.cursor break # Start the next search from the document of interest. if document_cursor is None: return options = search.QueryOptions(cursor=document_cursor) query = search.Query(query_string=query_string, options=options) results = index.search(query) for document in results: print(document) def saving_and_restoring_cursor(cursor): # Convert the cursor to a web-safe string. cursor_string = cursor.web_safe_string # Restore the cursor from a web-safe string. cursor = search.Cursor(web_safe_string=cursor_string) def add_faceted_document(index): document = search.Document( doc_id="doc1", fields=[search.AtomField(name="name", value="x86")], facets=[ search.AtomFacet(name="type", value="computer"), search.NumberFacet(name="ram_size_gb", value=8), ], ) index.put(document) def facet_discovery(index): # Create the query and enable facet discovery. query = search.Query("name:x86", enable_facet_discovery=True) results = index.search(query) for facet in results.facets: print("facet {}.".format(facet.name)) for value in facet.values: print( "{}: count={}, refinement_token={}".format( value.label, value.count, value.refinement_token ) ) def facet_by_name(index): # Create the query and specify to only return the "type" and "ram_size_gb" # facets. query = search.Query("name:x86", return_facets=["type", "ram_size_gb"]) results = index.search(query) for facet in results.facets: print("facet {}".format(facet.name)) for value in facet.values: print( "{}: count={}, refinement_token={}".format( value.label, value.count, value.refinement_token ) ) def facet_by_name_and_value(index): # Create the query and specify to return the "type" facet with values # "computer" and "printer" and the "ram_size_gb" facet with value in the # ranges [0,4), [4, 8), and [8, max]. query = search.Query( "name:x86", return_facets=[ search.FacetRequest("type", values=["computer", "printer"]), search.FacetRequest( "ram_size_gb", ranges=[ search.FacetRange(end=4), search.FacetRange(start=4, end=8), search.FacetRange(start=8), ], ), ], ) results = index.search(query) for facet in results.facets: print("facet {}".format(facet.name)) for value in facet.values: print( "{}: count={}, refinement_token={}".format( value.label, value.count, value.refinement_token ) )