appengine/standard/search/snippets/snippets.py (182 lines of code) (raw):
# Copyright 2016 Google Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from datetime import datetime
from google.appengine.api import search
def simple_search(index):
index.search("rose water")
def search_date(index):
index.search("1776-07-04")
def search_terms(index):
# search for documents with pianos that cost less than $5000
index.search("product = piano AND price < 5000")
def create_document():
document = search.Document(
# Setting the doc_id is optional. If omitted, the search service will
# create an identifier.
doc_id="PA6-5000",
fields=[
search.TextField(name="customer", value="Joe Jackson"),
search.HtmlField(name="comment", value="this is <em>marked up</em> text"),
search.NumberField(name="number_of_visits", value=7),
search.DateField(name="last_visit", value=datetime.now()),
search.DateField(
name="birthday", value=datetime(year=1960, month=6, day=19)
),
search.GeoField(
name="home_location", value=search.GeoPoint(37.619, -122.37)
),
],
)
return document
def add_document_to_index(document):
index = search.Index("products")
index.put(document)
def add_document_and_get_doc_id(documents):
index = search.Index("products")
results = index.put(documents)
document_ids = [document.id for document in results]
return document_ids
def get_document_by_id():
index = search.Index("products")
# Get a single document by ID.
document = index.get("AZ125")
# Get a range of documents starting with a given ID.
documents = index.get_range(start_id="AZ125", limit=100)
return document, documents
def query_index():
index = search.Index("products")
query_string = "product: piano AND price < 5000"
results = index.search(query_string)
for scored_document in results:
print(scored_document)
def delete_all_in_index(index):
# index.get_range by returns up to 100 documents at a time, so we must
# loop until we've deleted all items.
while True:
# Use ids_only to get the list of document IDs in the index without
# the overhead of getting the entire document.
document_ids = [document.doc_id for document in index.get_range(ids_only=True)]
# If no IDs were returned, we've deleted everything.
if not document_ids:
break
# Delete the documents for the given IDs
index.delete(document_ids)
def async_query(index):
futures = [index.search_async("foo"), index.search_async("bar")]
results = [future.get_result() for future in futures]
return results
def query_options():
index = search.Index("products")
query_string = "product: piano AND price < 5000"
# Create sort options to sort on price and brand.
sort_price = search.SortExpression(
expression="price", direction=search.SortExpression.DESCENDING, default_value=0
)
sort_brand = search.SortExpression(
expression="brand", direction=search.SortExpression.DESCENDING, default_value=""
)
sort_options = search.SortOptions(expressions=[sort_price, sort_brand])
# Create field expressions to add new fields to the scored documents.
price_per_note_expression = search.FieldExpression(
name="price_per_note", expression="price/88"
)
ivory_expression = search.FieldExpression(
name="ivory", expression='snippet("ivory", summary, 120)'
)
# Create query options using the sort options and expressions created
# above.
query_options = search.QueryOptions(
limit=25,
returned_fields=["model", "price", "description"],
returned_expressions=[price_per_note_expression, ivory_expression],
sort_options=sort_options,
)
# Build the Query and run the search
query = search.Query(query_string=query_string, options=query_options)
results = index.search(query)
for scored_document in results:
print(scored_document)
def query_results(index, query_string):
result = index.search(query_string)
total_matches = result.number_found
list_of_docs = result.results
number_of_docs_returned = len(list_of_docs)
return total_matches, list_of_docs, number_of_docs_returned
def query_offset(index, query_string):
offset = 0
while True:
# Build the query using the current offset.
options = search.QueryOptions(offset=offset)
query = search.Query(query_string=query_string, options=options)
# Get the results
results = index.search(query)
number_retrieved = len(results.results)
if number_retrieved == 0:
break
# Add the number of documents found to the offset, so that the next
# iteration will grab the next page of documents.
offset += number_retrieved
# Process the matched documents
for document in results:
print(document)
def query_cursor(index, query_string):
cursor = search.Cursor()
while cursor:
# Build the query using the cursor.
options = search.QueryOptions(cursor=cursor)
query = search.Query(query_string=query_string, options=options)
# Get the results and the next cursor
results = index.search(query)
cursor = results.cursor
for document in results:
print(document)
def query_per_document_cursor(index, query_string):
cursor = search.Cursor(per_result=True)
# Build the query using the cursor.
options = search.QueryOptions(cursor=cursor)
query = search.Query(query_string=query_string, options=options)
# Get the results.
results = index.search(query)
document_cursor = None
for document in results:
# discover some document of interest and grab its cursor, for this
# sample we'll just use the first document.
document_cursor = document.cursor
break
# Start the next search from the document of interest.
if document_cursor is None:
return
options = search.QueryOptions(cursor=document_cursor)
query = search.Query(query_string=query_string, options=options)
results = index.search(query)
for document in results:
print(document)
def saving_and_restoring_cursor(cursor):
# Convert the cursor to a web-safe string.
cursor_string = cursor.web_safe_string
# Restore the cursor from a web-safe string.
cursor = search.Cursor(web_safe_string=cursor_string)
def add_faceted_document(index):
document = search.Document(
doc_id="doc1",
fields=[search.AtomField(name="name", value="x86")],
facets=[
search.AtomFacet(name="type", value="computer"),
search.NumberFacet(name="ram_size_gb", value=8),
],
)
index.put(document)
def facet_discovery(index):
# Create the query and enable facet discovery.
query = search.Query("name:x86", enable_facet_discovery=True)
results = index.search(query)
for facet in results.facets:
print("facet {}.".format(facet.name))
for value in facet.values:
print(
"{}: count={}, refinement_token={}".format(
value.label, value.count, value.refinement_token
)
)
def facet_by_name(index):
# Create the query and specify to only return the "type" and "ram_size_gb"
# facets.
query = search.Query("name:x86", return_facets=["type", "ram_size_gb"])
results = index.search(query)
for facet in results.facets:
print("facet {}".format(facet.name))
for value in facet.values:
print(
"{}: count={}, refinement_token={}".format(
value.label, value.count, value.refinement_token
)
)
def facet_by_name_and_value(index):
# Create the query and specify to return the "type" facet with values
# "computer" and "printer" and the "ram_size_gb" facet with value in the
# ranges [0,4), [4, 8), and [8, max].
query = search.Query(
"name:x86",
return_facets=[
search.FacetRequest("type", values=["computer", "printer"]),
search.FacetRequest(
"ram_size_gb",
ranges=[
search.FacetRange(end=4),
search.FacetRange(start=4, end=8),
search.FacetRange(start=8),
],
),
],
)
results = index.search(query)
for facet in results.facets:
print("facet {}".format(facet.name))
for value in facet.values:
print(
"{}: count={}, refinement_token={}".format(
value.label, value.count, value.refinement_token
)
)