speech/snippets/transcribe_word_time_offsets.py (59 lines of code) (raw):

# Copyright 2017 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Google Cloud Speech API sample that demonstrates word time offsets.""" from google.cloud import speech def transcribe_file_with_word_time_offsets( audio_file: str, ) -> speech.RecognizeResponse: """Transcribe the given audio file synchronously and output the word time offsets. Args: audio_file (str): Path to the local audio file to be transcribed. Example: "resources/audio.wav" Returns: speech.RecognizeResponse: The response containing the transcription results with word time offsets. """ client = speech.SpeechClient() with open(audio_file, "rb") as file: audio_content = file.read() audio = speech.RecognitionAudio(content=audio_content) config = speech.RecognitionConfig( encoding=speech.RecognitionConfig.AudioEncoding.LINEAR16, sample_rate_hertz=16000, language_code="en-US", enable_word_time_offsets=True, ) response = client.recognize(config=config, audio=audio) for result in response.results: alternative = result.alternatives[0] print(f"Transcript: {alternative.transcript}") for word_info in alternative.words: word = word_info.word start_time = word_info.start_time end_time = word_info.end_time print( f"Word: {word}, start_time: {start_time.total_seconds()}, end_time: {end_time.total_seconds()}" ) return response # [START speech_transcribe_async_word_time_offsets_gcs] def transcribe_gcs_with_word_time_offsets( audio_uri: str, ) -> speech.RecognizeResponse: """Transcribe the given audio file asynchronously and output the word time offsets. Args: audio_uri (str): The Google Cloud Storage URI of the input audio file. E.g., gs://[BUCKET]/[FILE] Returns: speech.RecognizeResponse: The response containing the transcription results with word time offsets. """ from google.cloud import speech client = speech.SpeechClient() audio = speech.RecognitionAudio(uri=audio_uri) config = speech.RecognitionConfig( encoding=speech.RecognitionConfig.AudioEncoding.FLAC, sample_rate_hertz=16000, language_code="en-US", enable_word_time_offsets=True, ) operation = client.long_running_recognize(config=config, audio=audio) print("Waiting for operation to complete...") result = operation.result(timeout=90) for result in result.results: alternative = result.alternatives[0] print(f"Transcript: {alternative.transcript}") print(f"Confidence: {alternative.confidence}") for word_info in alternative.words: word = word_info.word start_time = word_info.start_time end_time = word_info.end_time print( f"Word: {word}, start_time: {start_time.total_seconds()}, end_time: {end_time.total_seconds()}" ) return result # [END speech_transcribe_async_word_time_offsets_gcs] if __name__ == "__main__": # It could be a local path like: path_to_file = "resources/audio.raw" path_to_file = "gs://cloud-samples-data/speech/audio.flac" if path_to_file.startswith("gs://"): transcribe_gcs_with_word_time_offsets(path_to_file) else: transcribe_file_with_word_time_offsets(path_to_file)