speech/snippets/transcribe_word_time_offsets.py (59 lines of code) (raw):
# Copyright 2017 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Google Cloud Speech API sample that demonstrates word time offsets."""
from google.cloud import speech
def transcribe_file_with_word_time_offsets(
audio_file: str,
) -> speech.RecognizeResponse:
"""Transcribe the given audio file synchronously and output the word time
offsets.
Args:
audio_file (str): Path to the local audio file to be transcribed.
Example: "resources/audio.wav"
Returns:
speech.RecognizeResponse: The response containing the transcription results with word time offsets.
"""
client = speech.SpeechClient()
with open(audio_file, "rb") as file:
audio_content = file.read()
audio = speech.RecognitionAudio(content=audio_content)
config = speech.RecognitionConfig(
encoding=speech.RecognitionConfig.AudioEncoding.LINEAR16,
sample_rate_hertz=16000,
language_code="en-US",
enable_word_time_offsets=True,
)
response = client.recognize(config=config, audio=audio)
for result in response.results:
alternative = result.alternatives[0]
print(f"Transcript: {alternative.transcript}")
for word_info in alternative.words:
word = word_info.word
start_time = word_info.start_time
end_time = word_info.end_time
print(
f"Word: {word}, start_time: {start_time.total_seconds()}, end_time: {end_time.total_seconds()}"
)
return response
# [START speech_transcribe_async_word_time_offsets_gcs]
def transcribe_gcs_with_word_time_offsets(
audio_uri: str,
) -> speech.RecognizeResponse:
"""Transcribe the given audio file asynchronously and output the word time
offsets.
Args:
audio_uri (str): The Google Cloud Storage URI of the input audio file.
E.g., gs://[BUCKET]/[FILE]
Returns:
speech.RecognizeResponse: The response containing the transcription results with word time offsets.
"""
from google.cloud import speech
client = speech.SpeechClient()
audio = speech.RecognitionAudio(uri=audio_uri)
config = speech.RecognitionConfig(
encoding=speech.RecognitionConfig.AudioEncoding.FLAC,
sample_rate_hertz=16000,
language_code="en-US",
enable_word_time_offsets=True,
)
operation = client.long_running_recognize(config=config, audio=audio)
print("Waiting for operation to complete...")
result = operation.result(timeout=90)
for result in result.results:
alternative = result.alternatives[0]
print(f"Transcript: {alternative.transcript}")
print(f"Confidence: {alternative.confidence}")
for word_info in alternative.words:
word = word_info.word
start_time = word_info.start_time
end_time = word_info.end_time
print(
f"Word: {word}, start_time: {start_time.total_seconds()}, end_time: {end_time.total_seconds()}"
)
return result
# [END speech_transcribe_async_word_time_offsets_gcs]
if __name__ == "__main__":
# It could be a local path like: path_to_file = "resources/audio.raw"
path_to_file = "gs://cloud-samples-data/speech/audio.flac"
if path_to_file.startswith("gs://"):
transcribe_gcs_with_word_time_offsets(path_to_file)
else:
transcribe_file_with_word_time_offsets(path_to_file)