in recommended-item-search/data_preparation.py [0:0]
def load_movielens_data():
# Download MovieLens dataset
urllib.request.urlretrieve(
url=os.path.join(FLAGS.base_url, FLAGS.filename),
filename=FLAGS.filename)
# Extract MovieLens dataset from zipfile
zipfile.ZipFile(FLAGS.filename, 'r').extractall()
# Load MovieLens dataset
tmp_dir = FLAGS.filename.split('.')[0]
movies = pandas.read_csv(
filepath_or_buffer=os.path.join(tmp_dir, 'movies.csv'),
names=['movie_id', 'title', 'genres'], header=0)
ratings = pandas.read_csv(
filepath_or_buffer=os.path.join(tmp_dir, 'ratings.csv'),
names=['user_id', 'movie_id', 'rating', 'unix_timestamp'],
header=0)
# Remove unnecessary files.
tf.gfile.DeleteRecursively(tmp_dir)
tf.gfile.Remove(FLAGS.filename)
return movies, ratings