in script-selenium/lib/gcp/geminihelper.js [22:81]
async function callPredict(mycontent) {
/* Config Parameters */
const project = configEnv.getProject();
const location = configFile.getLocation();
const model = configFile.getModel();
const thistemperature = parseFloat(configFile.getTemperature());
const thismaxtokens = parseFloat(configFile.getMaxtokens());
const vertex_ai = new VertexAI({
project: project,
location: location
});
/* Instantiate the models */
const generativeModel = vertex_ai.preview.getGenerativeModel({
model: model,
generation_config: {
"max_output_tokens": thismaxtokens,
"temperature": thistemperature,
"top_p": 1
},
safety_settings: [
{
"category": "HARM_CATEGORY_HATE_SPEECH",
"threshold": "BLOCK_ONLY_HIGH"
},
{
"category": "HARM_CATEGORY_DANGEROUS_CONTENT",
"threshold": "BLOCK_ONLY_HIGH"
},
{
"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT",
"threshold": "BLOCK_MEDIUM_AND_ABOVE"
},
{
"category": "HARM_CATEGORY_HARASSMENT",
"threshold": "BLOCK_MEDIUM_AND_ABOVE"
}
],
});
/* Getting the prompt */
const mycontext = contextFile.getContext();
/* Building our request */
const req = {
contents: [{role: 'user', parts: [{text: mycontext + "\n\n" + mycontent}]}],
};
const streamingResp = await generativeModel.generateContentStream(req);
const response = await streamingResp.response;
if(response.candidates[0].content.parts[0].text != "") {
return response.candidates[0].content.parts[0].text;
} else {
return "";
}
}