courses/understanding_spanner/dataflow/csv-to-spanner.py (63 lines of code) (raw):
# Copyright (C) 2023 Google Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import logging
import re, os
from typing import NamedTuple, List
import apache_beam as beam
from apache_beam.options.pipeline_options import PipelineOptions
from apache_beam.options.pipeline_options import SetupOptions
from apache_beam.io.gcp.spanner import SpannerInsert
from apache_beam.dataframe.io import read_csv
from apache_beam.dataframe import convert
class PetRow(NamedTuple):
PetID: int
OwnerID: int
PetName: str
PetType: str
Breed: str
beam.coders.registry.register_coder(PetRow, beam.coders.RowCoder)
def reverse_bits(num, bitSize = 32):
binary = bin(num)
reverse = binary[-1:1:-1]
reverse = reverse + (bitSize - len(reverse))*'0'
return int(reverse,2)
def main(argv=None, save_main_session=True):
"""Main entry point."""
projectid = os.environ.get('GOOGLE_CLOUD_PROJECT')
parser = argparse.ArgumentParser()
parser.add_argument(
'--input',
dest='input',
default='pets.csv',
help='Input filename.')
parser.add_argument(
'--instance',
dest='instance',
default='test-spanner-instance',
help='Spanner instance ID.')
parser.add_argument(
'--database',
dest='database',
default = 'pets-db',
help='Spanner database.')
parser.add_argument(
'--table',
dest='table',
default = 'pets',
help='Spanner table.')
known_args, pipeline_args = parser.parse_known_args(argv)
pipeline_options = PipelineOptions(pipeline_args)
pipeline_options.view_as(SetupOptions).save_main_session = save_main_session
with beam.Pipeline(options=pipeline_options) as p:
pets = p | 'Read CSV to dataframe' >> read_csv(known_args.input)
pets = ( convert.to_pcollection(pets)
| 'Convert to PetRow class' >> beam.Map(lambda x : PetRow(**(x._asdict())))
| 'Reverse bits in PetID' >> beam.Map(lambda x : PetRow(reverse_bits(x.PetID), reverse_bits(x.OwnerID), x.PetName, x.PetType, x.Breed))
)
pets | 'Write to Spanner' >> SpannerInsert(
project_id=projectid,
instance_id=known_args.instance,
database_id=known_args.database,
table=known_args.table)
pets | beam.Map(print)
if __name__ == '__main__':
logging.getLogger().setLevel(logging.INFO)
main()