courses/understanding_spanner/dataflow/spanner-to-bq0.py (31 lines of code) (raw):
# Copyright (C) 2023 Google Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import logging
import re, os
from typing import NamedTuple
import apache_beam as beam
from apache_beam.options.pipeline_options import PipelineOptions
from apache_beam.options.pipeline_options import SetupOptions
from apache_beam.io.gcp.spanner import ReadFromSpanner
class PetRow(NamedTuple):
PetName: str
PetType: str
Breed: str
beam.coders.registry.register_coder(PetRow, beam.coders.RowCoder)
def main(argv=None, save_main_session=True):
"""Main entry point."""
projectid = os.environ.get('GOOGLE_CLOUD_PROJECT')
parser = argparse.ArgumentParser()
# parser.add_argument(
# '--input',
# dest='input',
# default=f'gs://{projectid}/regions.csv',
# help='Input file to process.')
# parser.add_argument(
# '--output',
# dest='output',
# default = f'gs://{projectid}/regions_output',
# help='Output file to write results to.')
known_args, pipeline_args = parser.parse_known_args(argv)
pipeline_options = PipelineOptions(pipeline_args)
pipeline_options.view_as(SetupOptions).save_main_session = save_main_session
# The pipeline will be run on exiting the with block.
with beam.Pipeline(options=pipeline_options) as p:
owner_pets = p | ReadFromSpanner(
project_id=projectid,
instance_id='test-spanner-instance',
database_id='pets-db',
row_type=PetRow,
sql='SELECT * FROM Pets',
).with_output_types(PetRow)
owner_pets | beam.Map(print)
# regions = (
# p | 'Read Regions' >> ReadFromText(regionsfilename)
# | 'Parse Regions' >> beam.ParDo(RegionParseTuple())
# )
# regions | 'Print Regions' >> beam.Map(print)
# territories = (
# p | 'Read Territories' >> ReadFromText('territories.csv')
# | 'Parse Territories' >> beam.ParDo(TerritoryParseTuple())
# )
# territories | 'Print Territories' >> beam.Map(print)
# nested = (
# {'regions':regions, 'territories':territories}
# | 'Nest territories into regions' >> beam.CoGroupByKey()
# | 'Reshape to dict' >> beam.Map(lambda x : {'regionid': x[0], 'regionname': x[1]['regions'][0],
# 'territories': x[1]['territories']})
# | 'Sort by territoryid' >> beam.ParDo(SortTerritories())
# )
# nested | 'Print' >> beam.Map(print)
# nested | 'Write nested region_territory to BQ' >> beam.io.WriteToBigQuery('region_territory', dataset = 'dataflow'
# , project = PROJECT_ID
# , method = 'BATCH_LOAD'
# )
if __name__ == '__main__':
logging.getLogger().setLevel(logging.INFO)
main()