CPB100/lab3b/sparkml/train_and_apply.py (40 lines of code) (raw):

#!/usr/bin/env python """ Copyright Google Inc. 2016 Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import os import sys import pickle import itertools from math import sqrt from operator import add from os.path import join, isfile, dirname from pyspark import SparkContext, SparkConf, SQLContext from pyspark.mllib.recommendation import ALS, MatrixFactorizationModel, Rating from pyspark.sql.types import StructType, StructField, StringType, FloatType CLOUDSQL_INSTANCE_IP = '104.155.188.32' # CHANGE (database server IP) CLOUDSQL_DB_NAME = 'recommendation_spark' CLOUDSQL_USER = 'root' CLOUDSQL_PWD = 'easyPassword1@' #CHANGE (root password) conf = SparkConf().setAppName("train_model") sc = SparkContext(conf=conf) sqlContext = SQLContext(sc) jdbcDriver = 'com.mysql.jdbc.Driver' jdbcUrl = 'jdbc:mysql://%s/%s?user=%s&password=%s' % (CLOUDSQL_INSTANCE_IP, CLOUDSQL_DB_NAME, CLOUDSQL_USER, CLOUDSQL_PWD) # checkpointing helps prevent stack overflow errors sc.setCheckpointDir('checkpoint/') # Read the ratings and accommodations data from Cloud SQL dfRates = sqlContext.read.format('jdbc').options(driver=jdbcDriver, url=jdbcUrl, dbtable='Rating', useSSL='false').load() dfAccos = sqlContext.read.format('jdbc').options(driver=jdbcDriver, url=jdbcUrl, dbtable='Accommodation', useSSL='false').load() print("read ...") # train the model model = ALS.train(dfRates.rdd, 20, 20) # you could tune these numbers, but these are reasonable choices print("trained ...") # use this model to predict what the user would rate accommodations that she has not rated allPredictions = None for USER_ID in range(0, 100): dfUserRatings = dfRates.filter(dfRates.userId == USER_ID).rdd.map(lambda r: r.accoId).collect() rddPotential = dfAccos.rdd.filter(lambda x: x[0] not in dfUserRatings) pairsPotential = rddPotential.map(lambda x: (USER_ID, x[0])) predictions = model.predictAll(pairsPotential).map(lambda p: (str(p[0]), str(p[1]), float(p[2]))) predictions = predictions.takeOrdered(5, key=lambda x: -x[2]) # top 5 print(("predicted for user={0}".format(USER_ID))) if (allPredictions == None): allPredictions = predictions else: allPredictions.extend(predictions) # write them schema = StructType([StructField("userId", StringType(), True), StructField("accoId", StringType(), True), StructField("prediction", FloatType(), True)]) dfToSave = sqlContext.createDataFrame(allPredictions, schema) dfToSave.write.jdbc(url=jdbcUrl, table='Recommendation', mode='overwrite')