in notebooks/official/pipelines/Train_tabular_models_with_many_frameworks_and_import_to_Vertex_AI_using_Pipelines/Train_tabular_classification_model_using_XGBoost_and_import_to_Vertex_AI/pipeline.py [0:0]
def train_tabular_classification_model_using_XGBoost_pipeline():
dataset_gcs_uri = "gs://ml-pipeline-dataset/Chicago_taxi_trips/chicago_taxi_trips_2019-01-01_-_2019-02-01_limit=10000.csv"
feature_columns = ["trip_seconds", "trip_miles", "pickup_community_area", "dropoff_community_area", "fare", "tolls", "extras"] # Excluded "trip_total"
label_column = "tips"
training_set_fraction = 0.8
# Deploying the model might incur additional costs over time
deploy_model = False
classification_label_column = "class"
all_columns = [label_column] + feature_columns
dataset = download_from_gcs_op(
gcs_path=dataset_gcs_uri
).outputs["Data"]
dataset = select_columns_using_Pandas_on_CSV_data_op(
table=dataset,
column_names=all_columns,
).outputs["transformed_table"]
dataset = fill_all_missing_values_using_Pandas_on_CSV_data_op(
table=dataset,
replacement_value="0",
# # Optional:
# column_names=None, # =[...]
).outputs["transformed_table"]
classification_dataset = binarize_column_using_Pandas_on_CSV_data_op(
table=dataset,
column_name=label_column,
predicate="> 0",
new_column_name=classification_label_column,
).outputs["transformed_table"]
split_task = split_rows_into_subsets_op(
table=classification_dataset,
fraction_1=training_set_fraction,
)
classification_training_data = split_task.outputs["split_1"]
classification_testing_data = split_task.outputs["split_2"]
model = train_XGBoost_model_on_CSV_op(
training_data=classification_training_data,
label_column_name=classification_label_column,
objective="binary:logistic",
# Optional:
#starting_model=None,
#num_iterations=10,
#booster_params={},
#booster="gbtree",
#learning_rate=0.3,
#min_split_loss=0,
#max_depth=6,
).outputs["model"]
# Predicting on the testing data
predictions = xgboost_predict_on_CSV_op(
data=classification_testing_data,
model=model,
# label_column needs to be set when doing prediction on a dataset that has labels
label_column_name=classification_label_column,
).outputs["predictions"]
vertex_model_name = upload_XGBoost_model_to_Google_Cloud_Vertex_AI_op(
model=model,
).outputs["model_name"]
# Deploying the model might incur additional costs over time
if deploy_model:
vertex_endpoint_name = deploy_model_to_endpoint_op(
model_name=vertex_model_name,
).outputs["endpoint_name"]