in community-content/vertex_model_garden/model_oss/detectron2/handler.py [0:0]
def postprocess(self, inference_result: List[Any]) -> List[Any]:
"""Post process inference result."""
response_list = []
print("Num inference_items are:", len(inference_result))
for inference_item in inference_result:
predictions = inference_item["instances"].to("cpu")
print("Predictions are:", predictions)
boxes = None
if predictions.has("pred_boxes"):
boxes = predictions.pred_boxes.tensor.numpy().tolist()
scores = None
if predictions.has("scores"):
scores = predictions.scores.numpy().tolist()
classes = None
if predictions.has("pred_classes"):
classes = predictions.pred_classes.numpy().tolist()
masks_rle = None
if predictions.has("pred_masks"):
# Do run length encoding, else the mask output becomes huge.
masks_rle = [
mask_util.encode(np.asfortranarray(mask))
for mask in predictions.pred_masks
]
for rle in masks_rle:
rle["counts"] = rle["counts"].decode("utf-8")
response = {
"classes": classes,
"scores": scores,
"boxes": boxes,
"masks_rle": masks_rle,
}
response_list.append(json.dumps(response))
print("response_list: ", response_list)
return response_list