community-content/pytorch_efficient_training/resnet_dp.py (154 lines of code) (raw):
# Copyright 2022 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the \"License\");
# you may not use this file except in compliance with the License.\n",
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an \"AS IS\" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Train resnet on multiple GPUs with DP."""
import argparse
import time
from PIL import Image
import torch
from torch import nn
import torchmetrics
import torchvision
from torchvision.models import resnet50
class ImageFolder(torchvision.datasets.ImageFolder):
"""Class for loading imagenet."""
def __init__(self, image_list_file, transform=None, target_transform=None):
self.samples = self._make_dataset(image_list_file)
self.loader = self._loader
self.imgs = self.samples
self.targets = [s[1] for s in self.samples]
self.transform = transform
self.target_transform = target_transform
def _make_dataset(self, image_list_file):
items = []
with open(image_list_file, 'r') as f:
for line in f:
item = line.strip().split(' ')
items.append((item[0], int(item[1])))
return items
def _loader(self, image_path):
with open(image_path, 'rb') as f:
img = Image.open(f)
img = img.convert('RGB')
return img
def train(model, device, dataloader, optimizer):
model.train()
for image, target in dataloader:
image, target = image.to(device), target.to(device)
pred = model(image)
# pred.shape (N, C), target.shape (N)
loss = nn.functional.cross_entropy(pred, target)
optimizer.zero_grad()
loss.backward()
optimizer.step()
return loss
def evaluate(model, device, dataloader, metric):
model.eval()
with torch.no_grad():
for image, target in dataloader:
image, target = image.to(device), target.to(device)
pred = model(image)
metric.update(pred, target)
accuracy = metric.compute()
metric.reset()
return accuracy
def run_training(args):
"""Run training and evaluation."""
# Create model.
model = resnet50(weights=None)
model = nn.DataParallel(model)
model = model.to(args.device)
# Create train dataloader.
train_dataset = ImageFolder(
image_list_file=args.train_data_path,
transform=torchvision.transforms.Compose([
torchvision.transforms.RandomResizedCrop(224),
torchvision.transforms.RandomHorizontalFlip(),
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize(
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
]))
train_dataloader = torch.utils.data.DataLoader(
dataset=train_dataset,
batch_size=args.train_batch_size,
shuffle=True,
num_workers=args.dataloader_num_workers,
pin_memory=True)
print(f'Train dataloader | samples: {len(train_dataloader.dataset)}, '
f'num workers: {train_dataloader.num_workers}, '
f'global batch size: {args.train_batch_size}, '
f'batches/epoch: {len(train_dataloader)}')
# Create eval dataloader.
eval_dataset = ImageFolder(
image_list_file=args.eval_data_path,
transform=torchvision.transforms.Compose([
torchvision.transforms.Resize(256),
torchvision.transforms.CenterCrop(224),
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize(
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
]))
eval_dataloader = torch.utils.data.DataLoader(
dataset=eval_dataset,
batch_size=args.eval_batch_size,
shuffle=False,
num_workers=args.dataloader_num_workers,
pin_memory=True,
drop_last=True)
print(f'Eval dataloader | samples: {len(eval_dataloader.dataset)}, '
f'num workers: {eval_dataloader.num_workers}, '
f'global batch size: {args.eval_batch_size}, '
f'batches/epoch: {len(eval_dataloader)}')
# Optimizer.
optimizer = torch.optim.SGD(model.parameters(), 0.1)
# Main loop.
metric = torchmetrics.classification.Accuracy(top_k=1).to(args.device)
for epoch in range(1, args.epochs + 1):
print(f'Running epoch {epoch}')
start = time.time()
train(model, args.device, train_dataloader, optimizer)
end = time.time()
print(f'Training finished in {(end - start):>0.3f} seconds')
start = time.time()
evaluate(model, args.device, eval_dataloader, metric)
end = time.time()
print(f'Evaluation finished in {(end - start):>0.3f} seconds')
print('Done')
def create_args():
"""Create main args."""
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument(
'--gpus',
default=4,
type=int,
help='number of gpus to use')
parser.add_argument(
'--epochs',
default=1,
type=int,
help='number of total epochs to run')
parser.add_argument(
'--dataloader_num_workers',
default=2,
type=int,
help='number of workders for dataloader')
parser.add_argument(
'--train_data_path',
default='',
type=str,
help='path to training data')
parser.add_argument(
'--train_batch_size',
default=32,
type=int,
help='batch size for training per gpu')
parser.add_argument(
'--eval_data_path',
default='',
type=str,
help='path to evaluation data')
parser.add_argument(
'--eval_batch_size',
default=32,
type=int,
help='batch size for evaluation per gpu')
args = parser.parse_args()
return args
def main():
args = create_args()
args.device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
args.train_batch_size *= args.gpus
args.eval_batch_size *= args.gpus
args.dataloader_num_workers *= args.gpus
print(f'Launch job on {args.gpus} GPU with nn.DataParallel')
run_training(args)
if __name__ == '__main__':
main()