community-content/vertex_cpr_samples/xgboost/predictor_Classifier.py (29 lines of code) (raw):
import os
import numpy as np
import pickle
import xgboost as xgb
from google.cloud.aiplatform.constants import prediction
from google.cloud.aiplatform.utils import prediction_utils
from google.cloud.aiplatform.prediction.predictor import Predictor
from sklearn.datasets import make_blobs
from xgboost import XGBClassifier
class ClassifierPredictor(Predictor):
def __init__(self):
return
def load(self, artifacts_uri: str) -> None:
prediction_utils.download_model_artifacts(artifacts_uri)
if os.path.exists(prediction.MODEL_FILENAME_PKL):
booster = pickle.load(open(prediction.MODEL_FILENAME_PKL, "rb"))
else:
X, y = make_blobs(n_samples=100, centers=2, n_features=2, random_state=1)
model = XGBClassifier()
model.fit(X, y)
booster = model.get_booster()
self._booster = booster
def preprocess(self, prediction_input: dict) -> xgb.DMatrix:
instances = prediction_input["instances"]
return xgb.DMatrix(instances)
def predict(self, instances: xgb.DMatrix) -> np.ndarray:
return self._booster.predict(instances)
def postprocess(self, prediction_results: np.ndarray) -> dict:
return {"predictions": prediction_results.tolist()}