notebooks/community/model_garden/model_garden_huggingface_tei_deployment.ipynb (379 lines of code) (raw):

{ "cells": [ { "cell_type": "code", "execution_count": null, "metadata": { "cellView": "form", "id": "20qcPG1PmFUM" }, "outputs": [], "source": [ "# Copyright 2025 Google LLC\n", "#\n", "# Licensed under the Apache License, Version 2.0 (the \"License\");\n", "# you may not use this file except in compliance with the License.\n", "# You may obtain a copy of the License at\n", "#\n", "# https://www.apache.org/licenses/LICENSE-2.0\n", "#\n", "# Unless required by applicable law or agreed to in writing, software\n", "# distributed under the License is distributed on an \"AS IS\" BASIS,\n", "# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n", "# See the License for the specific language governing permissions and\n", "# limitations under the License." ] }, { "cell_type": "markdown", "metadata": { "id": "QXYOa1odnikj" }, "source": [ "# Vertex AI Model Garden - Hugging Face Text Embeddings Inference Deployment\n", "\n", "<table><tbody><tr>\n", " <td style=\"text-align: center\">\n", " <a href=\"https://console.cloud.google.com/vertex-ai/workbench/instances\">\n", " <img alt=\"Workbench logo\" src=\"https://lh3.googleusercontent.com/UiNooY4LUgW_oTvpsNhPpQzsstV5W8F7rYgxgGBD85cWJoLmrOzhVs_ksK_vgx40SHs7jCqkTkCk=e14-rj-sc0xffffff-h130-w32\" width=\"32px\"><br> Run in Workbench\n", " </a>\n", " </td>\n", " <td style=\"text-align: center\">\n", " <a href=\"https://console.cloud.google.com/vertex-ai/colab/import/https:%2F%2Fraw.githubusercontent.com%2FGoogleCloudPlatform%2Fvertex-ai-samples%2Fmain%2Fnotebooks%2Fcommunity%2Fmodel_garden%2Fmodel_garden_huggingface_tei_deployment.ipynb\">\n", " <img alt=\"Google Cloud Colab Enterprise logo\" src=\"https://lh3.googleusercontent.com/JmcxdQi-qOpctIvWKgPtrzZdJJK-J3sWE1RsfjZNwshCFgE_9fULcNpuXYTilIR2hjwN\" width=\"32px\"><br> Run in Colab Enterprise\n", " </a>\n", " </td>\n", " <td style=\"text-align: center\">\n", " <a href=\"https://github.com/GoogleCloudPlatform/vertex-ai-samples/blob/main/notebooks/community/model_garden/model_garden_huggingface_tei_deployment.ipynb\">\n", " <img alt=\"GitHub logo\" src=\"https://cloud.google.com/ml-engine/images/github-logo-32px.png\" width=\"32px\"><br> View on GitHub\n", " </a>\n", " </td>\n", "</tr></tbody></table>" ] }, { "cell_type": "markdown", "metadata": { "id": "cbDI9ag4oR4C" }, "source": [ "## Overview\n", "\n", "This notebook demonstrates deploying [nomic-ai/nomic-embed-text-v1](https://huggingface.co/nomic-ai/nomic-embed-text-v1) with [Text Embeddings Inference (TEI)](https://github.com/huggingface/text-embeddings-inference) from Hugging Face. In additional to `nomic-ai/nomic-embed-text-v1`, You can view and change the code to deploy a different Hugging Face `text-embeddings-inference` model with appropriate machine specs. **Note that some models might fail to deploy, even if they have `text-embeddings-inference` tags on the Hugging Face model card page.**\n", "\n", "\n", "### Objective\n", "\n", "- Download and deploy the `nomic-ai/nomic-embed-text-v1` model with TEI\n", "- Send prediction request to the deployed endpoint\n", "\n", "### File a bug\n", "\n", "File a bug on [GitHub](https://github.com/GoogleCloudPlatform/vertex-ai-samples/issues/new) if you encounter any issue with the notebook.\n", "\n", "### Costs\n", "\n", "This tutorial uses billable components of Google Cloud:\n", "\n", "* Vertex AI\n", "\n", "Learn about [Vertex AI pricing](https://cloud.google.com/vertex-ai/pricing) and use the [Pricing Calculator](https://cloud.google.com/products/calculator/) to generate a cost estimate based on your projected usage." ] }, { "cell_type": "markdown", "metadata": { "id": "hQJWRopioSKT" }, "source": [ "## Run the notebook" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "cellView": "form", "id": "J_jmxcIZoSxU" }, "outputs": [], "source": [ "# @title Setup Google Cloud project\n", "\n", "# @markdown 1. [Make sure that billing is enabled for your project](https://cloud.google.com/billing/docs/how-to/modify-project).\n", "\n", "# @markdown 2. **[Optional]** Set region. If not set, the region will be set automatically according to Colab Enterprise environment.\n", "\n", "REGION = \"\" # @param {type:\"string\"}\n", "\n", "! pip3 install --upgrade --quiet 'google-cloud-aiplatform>=1.84.0'\n", "! git clone https://github.com/GoogleCloudPlatform/vertex-ai-samples.git\n", "\n", "import importlib\n", "import os\n", "from typing import Tuple\n", "\n", "from google.cloud import aiplatform\n", "\n", "common_util = importlib.import_module(\n", " \"vertex-ai-samples.community-content.vertex_model_garden.model_oss.notebook_util.common_util\"\n", ")\n", "\n", "# Get the default cloud project id.\n", "PROJECT_ID = os.environ[\"GOOGLE_CLOUD_PROJECT\"]\n", "\n", "# Get the default region for launching jobs.\n", "if not REGION:\n", " if not os.environ.get(\"GOOGLE_CLOUD_REGION\"):\n", " raise ValueError(\n", " \"REGION must be set. See\"\n", " \" https://cloud.google.com/vertex-ai/docs/general/locations for\"\n", " \" available cloud locations.\"\n", " )\n", " REGION = os.environ[\"GOOGLE_CLOUD_REGION\"]\n", "\n", "# Enable the Vertex AI API and Compute Engine API, if not already.\n", "print(\"Enabling Vertex AI API and Compute Engine API.\")\n", "! gcloud services enable aiplatform.googleapis.com compute.googleapis.com\n", "\n", "# Initialize Vertex AI API.\n", "print(\"Initializing Vertex AI API.\")\n", "aiplatform.init(project=PROJECT_ID, location=REGION)\n", "! gcloud config set project $PROJECT_ID\n", "\n", "models, endpoints = {}, {}\n", "\n", "import vertexai\n", "\n", "vertexai.init(\n", " project=PROJECT_ID,\n", " location=REGION,\n", ")\n", "\n", "HF_TOKEN = \"\"\n", "\n", "HUGGING_FACE_MODEL_ID = \"nomic-ai/nomic-embed-text-v1\" # @param {type: \"string\", isTemplate: true}\n", "\n", "# The pre-built serving docker images for TEI.\n", "TEI_CPU_DOCKER_URI = \"us-docker.pkg.dev/deeplearning-platform-release/gcr.io/huggingface-text-embeddings-inference-cpu.1-4\"\n", "TEI_GPU_DOCKER_URI = \"us-docker.pkg.dev/deeplearning-platform-release/gcr.io/huggingface-text-embeddings-inference-cu122.1-4.ubuntu2204\"\n", "\n", "machine_type = \"g2-standard-8\" # @param {type: \"string\", isTemplate: true}\n", "accelerator_type = \"NVIDIA_L4\" # @param [\"NVIDIA_L4\", \"None\"] {isTemplate: true}\n", "\n", "if accelerator_type == \"None\":\n", " accelerator_type = \"\"\n", "\n", "if accelerator_type:\n", " common_util.check_quota(\n", " project_id=PROJECT_ID,\n", " region=REGION,\n", " accelerator_type=accelerator_type,\n", " accelerator_count=1 if accelerator_type else 0,\n", " is_for_training=False,\n", " )\n", "\n", "LABEL = \"tei\"\n", "\n", "# @markdown Set `use_dedicated_endpoint` to False if you don't want to use [dedicated endpoint](https://cloud.google.com/vertex-ai/docs/general/deployment#create-dedicated-endpoint).\n", "use_dedicated_endpoint = True # @param {type:\"boolean\"}" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "cellView": "form", "id": "obbeTtMJ5C8j" }, "outputs": [], "source": [ "# @title [Option 1] Deploy with Model Garden SDK\n", "\n", "accelerator_count = 1\n", "\n", "# @markdown Deploy with Gen AI model-centric SDK. This section uploads the prebuilt model to Model Registry and deploys it to a Vertex AI Endpoint. It takes 15 minutes to 1 hour to finish depending on the size of the model. See [use open models with Vertex AI](https://cloud.google.com/vertex-ai/generative-ai/docs/open-models/use-open-models) for documentation on other use cases.\n", "from vertexai.preview import model_garden\n", "\n", "model = model_garden.OpenModel(HUGGING_FACE_MODEL_ID)\n", "endpoints[LABEL] = model.deploy(\n", " machine_type=machine_type,\n", " accelerator_type=accelerator_type,\n", " accelerator_count=accelerator_count,\n", " hugging_face_access_token=HF_TOKEN,\n", " use_dedicated_endpoint=use_dedicated_endpoint,\n", " accept_eula=True, # Accept the End User License Agreement (EULA) on the model card before deploy. Otherwise, the deployment will be forbidden.\n", ")" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "cellView": "form", "id": "USB7dvYqvNdu" }, "outputs": [], "source": [ "# @title [Option 2] Deploy with customized configs\n", "\n", "# @markdown This section downloads the `nomic-ai/nomic-embed-text-v1` model from Hugging Face and deploys it to a Vertex AI Endpoint.\n", "# @markdown It takes ~20 minutes to complete the deployment.\n", "\n", "\n", "def deploy_model_tei(\n", " model_name: str,\n", " model_id: str,\n", " publisher: str,\n", " publisher_model_id: str,\n", " service_account: str = \"\",\n", " machine_type: str = \"g2-standard-4\",\n", " accelerator_type: str = \"NVIDIA_L4\",\n", " use_dedicated_endpoint: bool = False,\n", ") -> Tuple[aiplatform.Model, aiplatform.Endpoint]:\n", " \"\"\"Deploys models with TEI on Vertex AI.\"\"\"\n", " endpoint = aiplatform.Endpoint.create(\n", " display_name=f\"{model_name}-endpoint\",\n", " dedicated_endpoint_enabled=use_dedicated_endpoint,\n", " )\n", "\n", " docker_uri = TEI_GPU_DOCKER_URI if accelerator_type else TEI_CPU_DOCKER_URI\n", " env_vars = {\n", " \"MODEL_ID\": model_id,\n", " \"JSON_OUTPUT\": \"true\",\n", " \"DEPLOY_SOURCE\": \"notebook\",\n", " }\n", "\n", " # HF_TOKEN is not a compulsory field and may not be defined.\n", " try:\n", " if HF_TOKEN:\n", " env_vars[\"HF_API_TOKEN\"] = HF_TOKEN\n", " except NameError:\n", " pass\n", "\n", " model = aiplatform.Model.upload(\n", " display_name=model_name,\n", " serving_container_image_uri=docker_uri,\n", " serving_container_ports=[8080],\n", " serving_container_environment_variables=env_vars,\n", " serving_container_shared_memory_size_mb=(4 * 1024), # 4 GB\n", " model_garden_source_model_name=(\n", " f\"publishers/{publisher}/models/{publisher_model_id}\"\n", " ),\n", " )\n", "\n", " model.deploy(\n", " endpoint=endpoint,\n", " machine_type=machine_type,\n", " accelerator_type=accelerator_type,\n", " accelerator_count=1 if accelerator_type else 0,\n", " deploy_request_timeout=1800,\n", " service_account=service_account,\n", " system_labels={\n", " \"NOTEBOOK_NAME\": \"model_garden_huggingface_tei_deployment.ipynb\",\n", " },\n", " )\n", " return model, endpoint\n", "\n", "\n", "models[\"tei\"], endpoints[\"tei\"] = deploy_model_tei(\n", " model_name=common_util.get_job_name_with_datetime(prefix=HUGGING_FACE_MODEL_ID),\n", " model_id=HUGGING_FACE_MODEL_ID,\n", " publisher=\"hf-nomic-ai\",\n", " publisher_model_id=\"nomic-embed-text-v1\",\n", " service_account=\"\",\n", " machine_type=machine_type,\n", " accelerator_type=accelerator_type,\n", " use_dedicated_endpoint=use_dedicated_endpoint,\n", ")\n", "\n", "# @markdown Click \"Show Code\" to see more details." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "cellView": "form", "id": "Aa4e1-6FvRAP" }, "outputs": [], "source": [ "# @title Predict\n", "\n", "# @markdown Once deployment succeeds, you can send requests to the endpoint which computes text embeddings.\n", "\n", "# @markdown Here we use a simple example: `This is a sentence`.\n", "\n", "# @markdown Click \"Show Code\" to see more details.\n", "\n", "# Loads an existing endpoint instance using the endpoint name:\n", "# - Using `endpoint_name = endpoint.name` allows us to get the\n", "# endpoint name of the endpoint `endpoint` created in the cell\n", "# above.\n", "# - Alternatively, you can set `endpoint_name = \"1234567890123456789\"` to load\n", "# an existing endpoint with the ID 1234567890123456789.\n", "# You may uncomment the code below to load an existing endpoint.\n", "\n", "# endpoint_name = \"\" # @param {type:\"string\"}\n", "# aip_endpoint_name = (\n", "# f\"projects/{PROJECT_ID}/locations/{REGION}/endpoints/{endpoint_name}\"\n", "# )\n", "# endpoint = aiplatform.Endpoint(aip_endpoint_name)\n", "\n", "text = \"This is a sentence.\" # @param {type: \"string\"}\n", "\n", "instances = [{\"inputs\": text}]\n", "response = endpoints[\"tei\"].predict(\n", " instances=instances, use_dedicated_endpoint=use_dedicated_endpoint\n", ")\n", "\n", "for prediction in response.predictions:\n", " print(prediction)" ] }, { "cell_type": "markdown", "metadata": { "id": "tAelDidov5AW" }, "source": [ "## Clean up resources" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "cellView": "form", "id": "8SeZCFo5v7z-" }, "outputs": [], "source": [ "# @title Delete the models and endpoints\n", "# @markdown Delete the experiment models and endpoints to recycle the resources\n", "# @markdown and avoid unnecessary continuous charges that may incur.\n", "\n", "# Undeploy model and delete endpoint.\n", "for endpoint in endpoints.values():\n", " endpoint.delete(force=True)\n", "\n", "# Delete models.\n", "for model in models.values():\n", " model.delete()" ] } ], "metadata": { "colab": { "name": "model_garden_huggingface_tei_deployment.ipynb", "toc_visible": true }, "kernelspec": { "display_name": "Python 3", "name": "python3" } }, "nbformat": 4, "nbformat_minor": 0 }