chatlearn/models/vllm/hooks/vllm_0_6_6/qwen3.py [115:130]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
        super().__init__()
        self.hidden_size = hidden_size
        tp_size = get_tensor_model_parallel_world_size()
        self.total_num_heads = num_heads
        assert self.total_num_heads % tp_size == 0
        self.num_heads = self.total_num_heads // tp_size
        self.total_num_kv_heads = num_kv_heads
        if self.total_num_kv_heads >= tp_size:
            # Number of KV heads is greater than TP size, so we partition
            # the KV heads across multiple tensor parallel GPUs.
            assert self.total_num_kv_heads % tp_size == 0
        else:
            # Number of KV heads is less than TP size, so we replicate
            # the KV heads across multiple tensor parallel GPUs.
            assert tp_size % self.total_num_kv_heads == 0
        self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



chatlearn/models/vllm/hooks/vllm_0_6_6/qwen3_moe.py [163:178]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
        super().__init__()
        self.hidden_size = hidden_size
        tp_size = get_tensor_model_parallel_world_size()
        self.total_num_heads = num_heads
        assert self.total_num_heads % tp_size == 0
        self.num_heads = self.total_num_heads // tp_size
        self.total_num_kv_heads = num_kv_heads
        if self.total_num_kv_heads >= tp_size:
            # Number of KV heads is greater than TP size, so we partition
            # the KV heads across multiple tensor parallel GPUs.
            assert self.total_num_kv_heads % tp_size == 0
        else:
            # Number of KV heads is less than TP size, so we replicate
            # the KV heads across multiple tensor parallel GPUs.
            assert tp_size % self.total_num_kv_heads == 0
        self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



