def __init__()

in chatlearn/models/vllm/hooks/vllm_0_6_6/qwen3.py [0:0]


    def __init__(self,
                 hidden_size: int,
                 num_heads: int,
                 num_kv_heads: int,
                 max_position: int = 4096 * 32,
                 head_dim: Optional[int] = None,
                 rms_norm_eps: float = 1e-06,
                 qkv_bias: bool = False,
                 rope_theta: float = 10000,
                 cache_config: Optional[CacheConfig] = None,
                 quant_config: Optional[QuantizationConfig] = None,
                 rope_scaling: Optional[Tuple] = None,
                 prefix: str = "") -> None:
        super().__init__()
        self.hidden_size = hidden_size
        tp_size = get_tensor_model_parallel_world_size()
        self.total_num_heads = num_heads
        assert self.total_num_heads % tp_size == 0
        self.num_heads = self.total_num_heads // tp_size
        self.total_num_kv_heads = num_kv_heads
        if self.total_num_kv_heads >= tp_size:
            # Number of KV heads is greater than TP size, so we partition
            # the KV heads across multiple tensor parallel GPUs.
            assert self.total_num_kv_heads % tp_size == 0
        else:
            # Number of KV heads is less than TP size, so we replicate
            # the KV heads across multiple tensor parallel GPUs.
            assert tp_size % self.total_num_kv_heads == 0
        self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
        self.head_dim = head_dim or hidden_size // self.total_num_heads
        self.q_size = self.num_heads * self.head_dim
        self.kv_size = self.num_kv_heads * self.head_dim
        self.scaling = self.head_dim**-0.5
        self.rope_theta = rope_theta

        self.qkv_proj = QKVParallelLinear(
            hidden_size,
            self.head_dim,
            self.total_num_heads,
            self.total_num_kv_heads,
            bias=qkv_bias,
            quant_config=quant_config,
            prefix=f"{prefix}.qkv_proj",
        )
        self.o_proj = RowParallelLinear(
            self.total_num_heads * self.head_dim,
            hidden_size,
            bias=False,
            quant_config=quant_config,
            prefix=f"{prefix}.o_proj",
        )

        self.rotary_emb = get_rope(
            self.head_dim,
            rotary_dim=self.head_dim,
            max_position=max_position,
            base=self.rope_theta,
            rope_scaling=rope_scaling,
        )
        self.attn = Attention(self.num_heads,
                              self.head_dim,
                              self.scaling,
                              num_kv_heads=self.num_kv_heads,
                              cache_config=cache_config,
                              quant_config=quant_config,
                              prefix=f"{prefix}.attn")
        self.q_norm = RMSNorm(self.head_dim, eps=rms_norm_eps)
        self.k_norm = RMSNorm(self.head_dim, eps=rms_norm_eps)