chatlearn/models/vllm/hooks/vllm_0_6_3/input_preprocess.py (29 lines of code) (raw):

# Copyright 2024 Alibaba Group Holding Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Hooks of vllm-0.6.3 input preprocess to pass prompt text.""" # pylint: disable=unused-import,unused-argument from vllm.inputs import preprocess from vllm.inputs.parse import parse_singleton_prompt def extract_prompt_components( self, prompt, request_id, lora_request=None): ''' Extract the components of any single encoder or decoder input prompt. Arguments: * request_id * prompt: single encoder or decoder input prompt * lora_request: this is only valid for decoder prompts Returns: * prompt * prompt_token_ids * multi_modal_data * mm_processor_kwargs (request-level input processor/mapper overrides) ''' parsed = parse_singleton_prompt(prompt) assert parsed["type"] == "tokens", \ f"you must pass prompt_token_ids when add request to scheduler. while prompt {prompt}" prompt_text = parsed["content"]["prompt"] prompt_token_ids = parsed["content"]["prompt_token_ids"] multi_modal_data = parsed["content"].get("multi_modal_data") mm_processor_kwargs = parsed["content"].get("mm_processor_kwargs") return (prompt_text, prompt_token_ids, multi_modal_data, mm_processor_kwargs) preprocess.InputPreprocessor._extract_prompt_components = extract_prompt_components