chatlearn/models/vllm/hooks/vllm_0_6_3/input_preprocess.py (29 lines of code) (raw):
# Copyright 2024 Alibaba Group Holding Limited. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Hooks of vllm-0.6.3 input preprocess to pass prompt text."""
# pylint: disable=unused-import,unused-argument
from vllm.inputs import preprocess
from vllm.inputs.parse import parse_singleton_prompt
def extract_prompt_components(
self,
prompt,
request_id,
lora_request=None):
'''
Extract the components of any single encoder or decoder input prompt.
Arguments:
* request_id
* prompt: single encoder or decoder input prompt
* lora_request: this is only valid for decoder prompts
Returns:
* prompt
* prompt_token_ids
* multi_modal_data
* mm_processor_kwargs (request-level input processor/mapper overrides)
'''
parsed = parse_singleton_prompt(prompt)
assert parsed["type"] == "tokens", \
f"you must pass prompt_token_ids when add request to scheduler. while prompt {prompt}"
prompt_text = parsed["content"]["prompt"]
prompt_token_ids = parsed["content"]["prompt_token_ids"]
multi_modal_data = parsed["content"].get("multi_modal_data")
mm_processor_kwargs = parsed["content"].get("mm_processor_kwargs")
return (prompt_text, prompt_token_ids, multi_modal_data,
mm_processor_kwargs)
preprocess.InputPreprocessor._extract_prompt_components = extract_prompt_components