chatlearn/models/vllm/hooks/vllm_0_6_3/loader.py (75 lines of code) (raw):
# Copyright 2024 Alibaba Group Holding Limited. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Hooks of vllm-0.6.3 loader to load ckpt of megatron format."""
import torch
# pylint: disable=unused-import,wildcard-import,unused-argument
from vllm.model_executor.model_loader import loader
from vllm.model_executor.model_loader.loader import device_loading_context, _initialize_model
from vllm.model_executor.model_loader.weight_utils import initialize_dummy_weights
from vllm.model_executor.model_loader.utils import set_default_torch_dtype
from vllm.model_executor.models import llama
from vllm.model_executor.models import qwen2, qwen2_moe
from chatlearn.utils.vllm_import_helper import LlamaForCausalLM
from chatlearn.utils.vllm_import_helper import QWenLMHeadModel
from chatlearn.utils.vllm_import_helper import Qwen2ForCausalLM
from chatlearn.utils.vllm_import_helper import Qwen2MoeForCausalLM
from chatlearn.utils.vllm_import_helper import get_model_architecture
from chatlearn.utils.utils import get_use_legacy_models
from chatlearn.utils.vllm_utils import (
convert_llama_state_dict_from_megatron_to_vllm,
convert_llama_state_dict_from_mcore_to_vllm,
convert_qwen_state_dict_from_megatron_to_vllm,
load_checkpoint
)
def load_weights(self, model_args):
torch.distributed.barrier()
self.model_args = model_args
load_checkpoint(self, None, None, model_args=model_args)
torch.distributed.barrier()
def load_state_dict(self, state_dict, strict=True, assign=False):
qwen_version = None
if isinstance(self, LlamaForCausalLM):
use_legacy_models = get_use_legacy_models(self.model_args)
if use_legacy_models:
convert_state_dict_internal = convert_llama_state_dict_from_megatron_to_vllm
else:
convert_state_dict_internal = convert_llama_state_dict_from_mcore_to_vllm
elif isinstance(self, QWenLMHeadModel):
qwen_version = 1.0
convert_state_dict_internal = convert_qwen_state_dict_from_megatron_to_vllm
elif isinstance(self, Qwen2ForCausalLM) or (Qwen2MoeForCausalLM is not None and isinstance(self, Qwen2MoeForCausalLM)):
qwen_version = 2.0
convert_state_dict_internal = convert_qwen_state_dict_from_megatron_to_vllm
else:
raise RuntimeError(f"Unsupported model for vllm backend. \
support [LlamaForCausalLM, QWenLMHeadModel, Qwen2ForCausalLM, Qwen2MoeForCausalLM] only, while {self}")
state_dict = convert_state_dict_internal(self.model_args, self.config, qwen_version=qwen_version)
super(type(self), self).load_state_dict(state_dict, strict=strict)
def init(self, load_config):
# remove 'Model loader extra config' assert.
self.load_config = load_config
loader.DummyModelLoader.__init__ = init
# add ckpt loading of megatron format
def load_model(self, *, model_config,
device_config,
lora_config,
parallel_config,
scheduler_config,
cache_config):
with set_default_torch_dtype(model_config.dtype):
with torch.device(device_config.device):
model = _initialize_model(model_config, self.load_config,
lora_config, cache_config,
scheduler_config)
if self.load_config.model_loader_extra_config["load"] is not None:
qwen2.Qwen2ForCausalLM.load_state_dict = load_state_dict
qwen2.Qwen2ForCausalLM.load_weights = load_weights
qwen2_moe.Qwen2MoeForCausalLM.load_state_dict = load_state_dict
qwen2_moe.Qwen2MoeForCausalLM.load_weights = load_weights
llama.LlamaForCausalLM.load_state_dict = load_state_dict
llama.LlamaForCausalLM.load_weights = load_weights
model.load_weights(self.load_config.model_loader_extra_config)
else:
# For accurate performance evaluation, we assign
# random values to the weights.
initialize_dummy_weights(model)
for _, module in model.named_modules():
quant_method = getattr(module, "quant_method", None)
if quant_method is not None:
# When quant methods need to process weights after loading
# (for repacking, quantizing, etc), they expect parameters
# to be on the global target device. This scope is for the
# case where cpu offloading is used, where we will move the
# parameters onto device for processing and back off after.
with device_loading_context(
module, torch.device(device_config.device)):
quant_method.process_weights_after_loading(module)
return model.eval()
loader.DummyModelLoader.load_model = load_model