chatlearn/models/vllm/hooks/vllm_0_6_6/input_preprocess.py (33 lines of code) (raw):
# Copyright 2024 Alibaba Group Holding Limited. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Hooks of vllm-0.6.6 input preprocess to pass prompt text."""
# pylint: disable=unused-import,unused-argument
from vllm.inputs import preprocess
from vllm.inputs.data import token_inputs
from vllm.inputs.parse import parse_singleton_prompt
def _prompt_to_llm_inputs(
self,
prompt,
request_id: str,
lora_request=None,
):
"""
Extract the singleton inputs from a prompt.
Arguments:
* request_id
* prompt: single encoder or decoder input prompt
* lora_request: this is only valid for decoder prompts
Returns:
* :class:`SingletonInputs` instance
"""
parsed = parse_singleton_prompt(prompt)
assert parsed["type"] == "tokens", \
f"you must pass prompt_token_ids when add request to scheduler. while prompt {prompt}"
if parsed["type"] == "tokens":
tokens_content = parsed["content"]
prompt_token_ids = tokens_content["prompt_token_ids"]
token_type_ids = tokens_content.get("token_type_ids")
multi_modal_data = tokens_content.get("multi_modal_data")
mm_processor_kwargs = tokens_content.get("mm_processor_kwargs")
if multi_modal_data is not None and self._can_process_multimodal():
return self._process_multimodal(
prompt_token_ids,
multi_modal_data,
mm_processor_kwargs,
lora_request=lora_request,
)
return token_inputs(
prompt=tokens_content["prompt"],
prompt_token_ids=prompt_token_ids,
token_type_ids=token_type_ids,
multi_modal_data=multi_modal_data,
mm_processor_kwargs=mm_processor_kwargs,
)
preprocess.InputPreprocessor._prompt_to_llm_inputs = _prompt_to_llm_inputs