# Adapted from
# https://github.com/huggingface/transformers/blob/v4.28.0/src/transformers/models/qwen2/modeling_qwen2.py
# Copyright 2024 The Qwen team.
# Copyright 2023 The vLLM team.
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Inference-only Qwen2 model compatible with HuggingFace weights."""
# pylint: skip-file
from typing import Iterable, List, Optional, Set, Tuple, Union

import torch
from torch import nn
from transformers import Qwen3Config

from vllm.attention import Attention, AttentionMetadata, AttentionType
from vllm.compilation.decorators import support_torch_compile
from vllm.config import CacheConfig, VllmConfig
from vllm.distributed import get_pp_group, get_tensor_model_parallel_world_size
from vllm.logger import init_logger
from vllm.model_executor.layers.activation import SiluAndMul
from vllm.model_executor.layers.layernorm import RMSNorm
from vllm.model_executor.layers.linear import (MergedColumnParallelLinear,
                                               QKVParallelLinear,
                                               RowParallelLinear)
from vllm.model_executor.layers.logits_processor import LogitsProcessor
from vllm.model_executor.layers.pooler import Pooler, PoolingType
from vllm.model_executor.layers.quantization import QuantizationConfig
from vllm.model_executor.layers.rotary_embedding import get_rope
from vllm.model_executor.layers.sampler import SamplerOutput, get_sampler
from vllm.model_executor.layers.vocab_parallel_embedding import (
    ParallelLMHead, VocabParallelEmbedding)
from vllm.model_executor.model_loader.weight_utils import (
    default_weight_loader, maybe_remap_kv_scale_name)
from vllm.model_executor.pooling_metadata import PoolingMetadata
from vllm.model_executor.sampling_metadata import SamplingMetadata
from vllm.sequence import IntermediateTensors, PoolerOutput

from vllm.model_executor.models.interfaces import SupportsLoRA, SupportsPP
from vllm.model_executor.models.utils import (AutoWeightsLoader, PPMissingLayer, WeightsMapper,
                    is_pp_missing_parameter,
                    make_empty_intermediate_tensors_factory, make_layers,
                    maybe_prefix)

logger = init_logger(__name__)


class Qwen3MLP(nn.Module):

    def __init__(
        self,
        hidden_size: int,
        intermediate_size: int,
        hidden_act: str,
        quant_config: Optional[QuantizationConfig] = None,
        prefix: str = "",
    ) -> None:
        super().__init__()
        self.gate_up_proj = MergedColumnParallelLinear(
            hidden_size,
            [intermediate_size] * 2,
            bias=False,
            quant_config=quant_config,
            prefix=f"{prefix}.gate_up_proj",
        )
        self.down_proj = RowParallelLinear(
            intermediate_size,
            hidden_size,
            bias=False,
            quant_config=quant_config,
            prefix=f"{prefix}.down_proj",
        )
        if hidden_act != "silu":
            raise ValueError(f"Unsupported activation: {hidden_act}. "
                             "Only silu is supported for now.")
        self.act_fn = SiluAndMul()

    def forward(self, x):
        gate_up, _ = self.gate_up_proj(x)
        x = self.act_fn(gate_up)
        x, _ = self.down_proj(x)
        return x


class Qwen3Attention(nn.Module):

    def __init__(self,
                 hidden_size: int,
                 num_heads: int,
                 num_kv_heads: int,
                 max_position: int = 4096 * 32,
                 head_dim: Optional[int] = None,
                 rms_norm_eps: float = 1e-06,
                 qkv_bias: bool = False,
                 rope_theta: float = 10000,
                 cache_config: Optional[CacheConfig] = None,
                 quant_config: Optional[QuantizationConfig] = None,
                 rope_scaling: Optional[Tuple] = None,
                 prefix: str = "") -> None:
        super().__init__()
        self.hidden_size = hidden_size
        tp_size = get_tensor_model_parallel_world_size()
        self.total_num_heads = num_heads
        assert self.total_num_heads % tp_size == 0
        self.num_heads = self.total_num_heads // tp_size
        self.total_num_kv_heads = num_kv_heads
        if self.total_num_kv_heads >= tp_size:
            # Number of KV heads is greater than TP size, so we partition
            # the KV heads across multiple tensor parallel GPUs.
            assert self.total_num_kv_heads % tp_size == 0
        else:
            # Number of KV heads is less than TP size, so we replicate
            # the KV heads across multiple tensor parallel GPUs.
            assert tp_size % self.total_num_kv_heads == 0
        self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
        self.head_dim = head_dim or hidden_size // self.total_num_heads
        self.q_size = self.num_heads * self.head_dim
        self.kv_size = self.num_kv_heads * self.head_dim
        self.scaling = self.head_dim**-0.5
        self.rope_theta = rope_theta

        self.qkv_proj = QKVParallelLinear(
            hidden_size,
            self.head_dim,
            self.total_num_heads,
            self.total_num_kv_heads,
            bias=qkv_bias,
            quant_config=quant_config,
            prefix=f"{prefix}.qkv_proj",
        )
        self.o_proj = RowParallelLinear(
            self.total_num_heads * self.head_dim,
            hidden_size,
            bias=False,
            quant_config=quant_config,
            prefix=f"{prefix}.o_proj",
        )

        self.rotary_emb = get_rope(
            self.head_dim,
            rotary_dim=self.head_dim,
            max_position=max_position,
            base=self.rope_theta,
            rope_scaling=rope_scaling,
        )
        self.attn = Attention(self.num_heads,
                              self.head_dim,
                              self.scaling,
                              num_kv_heads=self.num_kv_heads,
                              cache_config=cache_config,
                              quant_config=quant_config,
                              prefix=f"{prefix}.attn")
        self.q_norm = RMSNorm(self.head_dim, eps=rms_norm_eps)
        self.k_norm = RMSNorm(self.head_dim, eps=rms_norm_eps)

    def forward(
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
        kv_cache: torch.Tensor,
        attn_metadata: AttentionMetadata,
        attn_type: str = AttentionType.DECODER,
    ) -> torch.Tensor:
        qkv, _ = self.qkv_proj(hidden_states)
        q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
        # Add qk-norm
        q_by_head = q.view(*q.shape[:-1], q.shape[-1] // self.head_dim,
                           self.head_dim)
        q_by_head = self.q_norm.forward_native(q_by_head)
        q = q_by_head.view(q.shape)
        k_by_head = k.view(*k.shape[:-1], k.shape[-1] // self.head_dim,
                           self.head_dim)
        k_by_head = self.k_norm.forward_native(k_by_head)
        k = k_by_head.view(k.shape)

        q, k = self.rotary_emb(positions, q, k)
        attn_output = self.attn(q,
                                k,
                                v,
                                kv_cache,
                                attn_metadata,
                                attn_type=attn_type)
        output, _ = self.o_proj(attn_output)
        return output


class Qwen3DecoderLayer(nn.Module):

    def __init__(
        self,
        config: Qwen3Config,
        cache_config: Optional[CacheConfig] = None,
        quant_config: Optional[QuantizationConfig] = None,
        prefix: str = "",
    ) -> None:
        super().__init__()
        self.hidden_size = config.hidden_size
        # Requires transformers > 4.32.0
        rope_theta = getattr(config, "rope_theta", 1000000)
        rope_scaling = getattr(config, "rope_scaling", None)
        self.self_attn = Qwen3Attention(
            hidden_size=self.hidden_size,
            num_heads=config.num_attention_heads,
            max_position=config.max_position_embeddings,
            num_kv_heads=config.num_key_value_heads,
            rope_theta=rope_theta,
            rms_norm_eps=config.rms_norm_eps,
            qkv_bias=getattr(config, 'attention_bias', False),
            head_dim=getattr(config, 'head_dim', None),
            cache_config=cache_config,
            quant_config=quant_config,
            rope_scaling=rope_scaling,
            prefix=f"{prefix}.self_attn",
        )
        self.mlp = Qwen3MLP(
            hidden_size=self.hidden_size,
            intermediate_size=config.intermediate_size,
            hidden_act=config.hidden_act,
            quant_config=quant_config,
            prefix=f"{prefix}.mlp",
        )
        self.input_layernorm = RMSNorm(config.hidden_size,
                                       eps=config.rms_norm_eps)
        self.post_attention_layernorm = RMSNorm(config.hidden_size,
                                                eps=config.rms_norm_eps)

        # By default, Qwen2 uses causal attention as it is a decoder-only model.
        # You can override the HF config with `is_causal=False` to enable
        # bidirectional attention, which is used in some embedding models
        # (e.g. Alibaba-NLP/gte-Qwen2-7B-instruct)
        if getattr(config, "is_causal", True):
            self._attn_type = AttentionType.DECODER
        else:
            self._attn_type = AttentionType.ENCODER_ONLY

    def forward(
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
        kv_cache: torch.Tensor,
        attn_metadata: AttentionMetadata,
        residual: Optional[torch.Tensor],
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        # Self Attention
        if residual is None:
            residual = hidden_states
            hidden_states = self.input_layernorm(hidden_states)
        else:
            hidden_states, residual = self.input_layernorm(
                hidden_states, residual)
        hidden_states = self.self_attn(
            positions=positions,
            hidden_states=hidden_states,
            kv_cache=kv_cache,
            attn_metadata=attn_metadata,
            attn_type=self._attn_type,
        )

        # Fully Connected
        hidden_states, residual = self.post_attention_layernorm(
            hidden_states, residual)
        hidden_states = self.mlp(hidden_states)
        return hidden_states, residual

ALL_DECODER_LAYER_TYPES = {
    "attention": Qwen3DecoderLayer,
}

@support_torch_compile
class Qwen3Model(nn.Module):

    def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
        super().__init__()

        config = vllm_config.model_config.hf_config
        cache_config = vllm_config.cache_config
        quant_config = vllm_config.quant_config

        # TODO (@robertgshaw2): see if this can be moved out
        if (cache_config.sliding_window is not None
                and hasattr(config, "max_window_layers")):
            raise ValueError("Sliding window for some but all layers is not "
                             "supported. This model uses sliding window "
                             "but `max_window_layers` = {} is less than "
                             "`num_hidden_layers` = {}. Please open an issue "
                             "to discuss this feature.".format(
                                 config.max_window_layers,
                                 config.num_hidden_layers,
                             ))

        self.config = config
        self.padding_idx = config.pad_token_id
        self.vocab_size = config.vocab_size

        if get_pp_group().is_first_rank or (config.tie_word_embeddings
                                            and get_pp_group().is_last_rank):
            self.embed_tokens = VocabParallelEmbedding(
                config.vocab_size,
                config.hidden_size,
                quant_config=quant_config,
                prefix=f"{prefix}.embed_tokens",
            )
        else:
            self.embed_tokens = PPMissingLayer()

        self.start_layer, self.end_layer, self.layers = make_layers(
            config.num_hidden_layers,
            lambda prefix: Qwen3DecoderLayer(config=config,
                                             cache_config=cache_config,
                                             quant_config=quant_config,
                                             prefix=f"{prefix}.layers"),
            prefix=f"{prefix}.layers",
        )

        self.make_empty_intermediate_tensors = (
            make_empty_intermediate_tensors_factory(
                ["hidden_states", "residual"], config.hidden_size))
        if get_pp_group().is_last_rank:
            self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        else:
            self.norm = PPMissingLayer()

    def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
        return self.embed_tokens(input_ids)

    def forward(
        self,
        input_ids: torch.Tensor,
        positions: torch.Tensor,
        kv_caches: List[torch.Tensor],
        attn_metadata: AttentionMetadata,
        intermediate_tensors: Optional[IntermediateTensors] = None,
        inputs_embeds: Optional[torch.Tensor] = None,
    ) -> Union[torch.Tensor, IntermediateTensors]:
        if get_pp_group().is_first_rank:
            if inputs_embeds is not None:
                hidden_states = inputs_embeds
            else:
                hidden_states = self.get_input_embeddings(input_ids)
            residual = None
        else:
            assert intermediate_tensors is not None
            hidden_states = intermediate_tensors["hidden_states"]
            residual = intermediate_tensors["residual"]
        for i in range(self.start_layer, self.end_layer):
            layer = self.layers[i]
            hidden_states, residual = layer(
                positions,
                hidden_states,
                kv_caches[i - self.start_layer],
                attn_metadata,
                residual,
            )
        if not get_pp_group().is_last_rank:
            return IntermediateTensors({
                "hidden_states": hidden_states,
                "residual": residual
            })
        hidden_states, _ = self.norm(hidden_states, residual)
        return hidden_states

    def load_weights(self, weights: Iterable[Tuple[str,
                                                   torch.Tensor]]) -> Set[str]:
        stacked_params_mapping = [
            # (param_name, shard_name, shard_id)
            ("qkv_proj", "q_proj", "q"),
            ("qkv_proj", "k_proj", "k"),
            ("qkv_proj", "v_proj", "v"),
            ("gate_up_proj", "gate_proj", 0),
            ("gate_up_proj", "up_proj", 1),
        ]
        params_dict = dict(self.named_parameters(remove_duplicate=False))
        loaded_params: Set[str] = set()
        for name, loaded_weight in weights:
            if "rotary_emb.inv_freq" in name:
                continue
            for (param_name, weight_name, shard_id) in stacked_params_mapping:
                if weight_name not in name:
                    continue
                name = name.replace(weight_name, param_name)
                # Skip loading extra bias for GPTQ models.
                if name.endswith(".bias") and name not in params_dict:
                    continue
                if is_pp_missing_parameter(name, self):
                    continue
                param = params_dict[name]
                weight_loader = param.weight_loader
                weight_loader(param, loaded_weight, shard_id)
                break
            else:
                # Skip loading extra bias for GPTQ models.
                if name.endswith(".bias") and name not in params_dict:
                    continue
                # Remapping the name of FP8 kv-scale.
                name = maybe_remap_kv_scale_name(name, params_dict)
                if name is None:
                    continue
                if is_pp_missing_parameter(name, self):
                    continue
                param = params_dict[name]
                weight_loader = getattr(param, "weight_loader",
                                        default_weight_loader)
                weight_loader(param, loaded_weight)
            loaded_params.add(name)
        return loaded_params


class Qwen3ForCausalLM(nn.Module, SupportsLoRA, SupportsPP):
    packed_modules_mapping = {
        "qkv_proj": [
            "q_proj",
            "k_proj",
            "v_proj",
        ],
        "gate_up_proj": [
            "gate_proj",
            "up_proj",
        ],
    }

    # LoRA specific attributes
    supported_lora_modules = [
        "qkv_proj",
        "o_proj",
        "gate_up_proj",
        "down_proj",
    ]
    embedding_modules = {}
    embedding_padding_modules = []

    # BitandBytes specific attributes
    bitsandbytes_stacked_params_mapping = {
        # shard_name, weight_name, index
        "q_proj": ("qkv_proj", 0),
        "k_proj": ("qkv_proj", 1),
        "v_proj": ("qkv_proj", 2),
        "gate_proj": ("gate_up_proj", 0),
        "up_proj": ("gate_up_proj", 1),
    }

    def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
        super().__init__()
        config = vllm_config.model_config.hf_config
        quant_config = vllm_config.quant_config
        lora_config = vllm_config.lora_config

        self.config = config
        self.lora_config = lora_config

        self.quant_config = quant_config
        self.model = Qwen3Model(vllm_config=vllm_config,
                                prefix=maybe_prefix(prefix, "model"))

        if get_pp_group().is_last_rank:
            if config.tie_word_embeddings:
                self.lm_head = self.model.embed_tokens
            else:
                self.lm_head = ParallelLMHead(config.vocab_size,
                                              config.hidden_size,
                                              quant_config=quant_config,
                                              prefix=maybe_prefix(
                                                  prefix, "lm_head"))
        else:
            self.lm_head = PPMissingLayer()

        self.logits_processor = LogitsProcessor(config.vocab_size)
        self.sampler = get_sampler()

        self.make_empty_intermediate_tensors = (
            self.model.make_empty_intermediate_tensors)

    def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
        return self.model.get_input_embeddings(input_ids)

    def forward(
        self,
        input_ids: torch.Tensor,
        positions: torch.Tensor,
        kv_caches: List[torch.Tensor],
        attn_metadata: AttentionMetadata,
        intermediate_tensors: Optional[IntermediateTensors] = None,
        inputs_embeds: Optional[torch.Tensor] = None,
    ) -> Union[torch.Tensor, IntermediateTensors]:
        hidden_states = self.model(input_ids, positions, kv_caches,
                                   attn_metadata, intermediate_tensors,
                                   inputs_embeds)
        return hidden_states

    def compute_logits(
        self,
        hidden_states: torch.Tensor,
        sampling_metadata: SamplingMetadata,
    ) -> Optional[torch.Tensor]:
        logits = self.logits_processor(self.lm_head, hidden_states,
                                       sampling_metadata)
        return logits

    def sample(
        self,
        logits: torch.Tensor,
        sampling_metadata: SamplingMetadata,
    ) -> Optional[SamplerOutput]:
        next_tokens = self.sampler(logits, sampling_metadata)
        return next_tokens

    def load_weights(self, weights: Iterable[Tuple[str,
                                                   torch.Tensor]]) -> Set[str]:
        loader = AutoWeightsLoader(
            self,
            skip_prefixes=(["lm_head."]
                           if self.config.tie_word_embeddings else None),
        )
        return loader.load_weights(weights)