# Adapted from
# https://github.com/huggingface/transformers/blob/v4.28.0/src/transformers/models/qwen2_moe/modeling_qwen2_moe.py
# Copyright 2024 The Qwen team.
# Copyright 2023 The vLLM team.
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Inference-only Qwen2MoE model compatible with HuggingFace weights."""
# pylint: skip-file
from typing import Any, Dict, Iterable, List, Optional, Set, Tuple, Union

import torch
import torch.nn.functional as F
from torch import nn
from transformers import PretrainedConfig

from vllm.attention import Attention, AttentionMetadata
from vllm.compilation.decorators import support_torch_compile
from vllm.config import CacheConfig, VllmConfig
from vllm.distributed import (get_pp_group,
                              get_tensor_model_parallel_world_size,
                              tensor_model_parallel_all_reduce)
from vllm.model_executor.layers.activation import SiluAndMul
from vllm.model_executor.layers.fused_moe import FusedMoE
from vllm.model_executor.layers.layernorm import RMSNorm
from vllm.model_executor.layers.linear import (MergedColumnParallelLinear,
                                               QKVParallelLinear,
                                               ReplicatedLinear,
                                               RowParallelLinear)
from vllm.model_executor.layers.logits_processor import LogitsProcessor
from vllm.model_executor.layers.quantization import QuantizationConfig
from vllm.model_executor.layers.rotary_embedding import get_rope
from vllm.model_executor.layers.sampler import SamplerOutput, get_sampler
from vllm.model_executor.layers.vocab_parallel_embedding import (
    ParallelLMHead, VocabParallelEmbedding)
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
from vllm.model_executor.sampling_metadata import SamplingMetadata
from vllm.sequence import IntermediateTensors
from vllm.utils import print_warning_once

from vllm.model_executor.models.interfaces import SupportsPP
from vllm.model_executor.models.utils import (extract_layer_index, is_pp_missing_parameter,
                    make_empty_intermediate_tensors_factory, make_layers,
                    maybe_prefix)


class Qwen3MoeMLP(nn.Module):

    def __init__(
        self,
        hidden_size: int,
        intermediate_size: int,
        hidden_act: str,
        quant_config: Optional[QuantizationConfig] = None,
        reduce_results: bool = True,
        prefix: str = "",
    ) -> None:
        super().__init__()
        self.gate_up_proj = MergedColumnParallelLinear(
            hidden_size, [intermediate_size] * 2,
            bias=False,
            quant_config=quant_config,
            prefix=f"{prefix}.gate_up_proj")
        self.down_proj = RowParallelLinear(intermediate_size,
                                           hidden_size,
                                           bias=False,
                                           quant_config=quant_config,
                                           reduce_results=reduce_results,
                                           prefix=f"{prefix}.down_proj")
        if hidden_act != "silu":
            raise ValueError(f"Unsupported activation: {hidden_act}. "
                             "Only silu is supported for now.")
        self.act_fn = SiluAndMul()

    def forward(self, x):
        gate_up, _ = self.gate_up_proj(x)
        x = self.act_fn(gate_up)
        x, _ = self.down_proj(x)
        return x


class Qwen3MoeSparseMoeBlock(nn.Module):

    def __init__(
        self,
        config: PretrainedConfig,
        quant_config: Optional[QuantizationConfig] = None,
        prefix: str = "",
    ):
        super().__init__()
        self.tp_size = get_tensor_model_parallel_world_size()

        if self.tp_size > config.num_experts:
            raise ValueError(
                f"Tensor parallel size {self.tp_size} is greater than "
                f"the number of experts {config.num_experts}.")

        self.experts = FusedMoE(num_experts=config.num_experts,
                                top_k=config.num_experts_per_tok,
                                hidden_size=config.hidden_size,
                                intermediate_size=config.moe_intermediate_size,
                                reduce_results=False,
                                renormalize=config.norm_topk_prob,
                                quant_config=quant_config,
                                prefix=f"{prefix}.experts")

        self.gate = ReplicatedLinear(config.hidden_size,
                                     config.num_experts,
                                     bias=False,
                                     quant_config=None,
                                     prefix=f"{prefix}.gate")

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        # NOTE: hidden_states can have either 1D or 2D shape.
        orig_shape = hidden_states.shape
        hidden_dim = hidden_states.shape[-1]
        hidden_states = hidden_states.view(-1, hidden_dim)

        # router_logits: (num_tokens, n_experts)
        router_logits, _ = self.gate(hidden_states)
        final_hidden_states = self.experts(hidden_states=hidden_states,
                                           router_logits=router_logits)
        final_hidden_states = final_hidden_states
        if self.tp_size > 1:
            final_hidden_states = tensor_model_parallel_all_reduce(
                final_hidden_states)

        return final_hidden_states.view(orig_shape)


class Qwen3MoeAttention(nn.Module):

    def __init__(
        self,
        hidden_size: int,
        num_heads: int,
        num_kv_heads: int,
        rope_theta: float = 10000,
        rope_scaling: Optional[Dict[str, Any]] = None,
        max_position_embeddings: int = 8192,
        head_dim: Optional[int] = None,
        rms_norm_eps: float = 1e-06,
        qkv_bias: bool = False,
        cache_config: Optional[CacheConfig] = None,
        quant_config: Optional[QuantizationConfig] = None,
        prefix: str = "",
    ) -> None:
        super().__init__()
        self.hidden_size = hidden_size
        tp_size = get_tensor_model_parallel_world_size()
        self.total_num_heads = num_heads
        assert self.total_num_heads % tp_size == 0
        self.num_heads = self.total_num_heads // tp_size
        self.total_num_kv_heads = num_kv_heads
        if self.total_num_kv_heads >= tp_size:
            # Number of KV heads is greater than TP size, so we partition
            # the KV heads across multiple tensor parallel GPUs.
            assert self.total_num_kv_heads % tp_size == 0
        else:
            # Number of KV heads is less than TP size, so we replicate
            # the KV heads across multiple tensor parallel GPUs.
            assert tp_size % self.total_num_kv_heads == 0
        self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
        self.head_dim = head_dim or (hidden_size // self.total_num_heads)
        self.q_size = self.num_heads * self.head_dim
        self.kv_size = self.num_kv_heads * self.head_dim
        self.scaling = self.head_dim**-0.5
        self.rope_theta = rope_theta
        self.max_position_embeddings = max_position_embeddings

        self.qkv_proj = QKVParallelLinear(hidden_size,
                                          self.head_dim,
                                          self.total_num_heads,
                                          self.total_num_kv_heads,
                                          bias=qkv_bias,
                                          quant_config=quant_config,
                                          prefix=f"{prefix}.qkv_proj")

        self.o_proj = RowParallelLinear(self.total_num_heads * self.head_dim,
                                        hidden_size,
                                        bias=False,
                                        quant_config=quant_config,
                                        prefix=f"{prefix}.o_proj")

        self.rotary_emb = get_rope(
            self.head_dim,
            rotary_dim=self.head_dim,
            max_position=max_position_embeddings,
            base=rope_theta,
            rope_scaling=rope_scaling,
        )
        self.attn = Attention(self.num_heads,
                              self.head_dim,
                              self.scaling,
                              num_kv_heads=self.num_kv_heads,
                              cache_config=cache_config,
                              quant_config=quant_config,
                              prefix=f"{prefix}.attn")
        self.q_norm = RMSNorm(self.head_dim, eps=rms_norm_eps)
        self.k_norm = RMSNorm(self.head_dim, eps=rms_norm_eps)

    def forward(
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
        kv_cache: torch.Tensor,
        attn_metadata: AttentionMetadata,
    ) -> torch.Tensor:
        qkv, _ = self.qkv_proj(hidden_states)
        q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)

        # Add qk-norm
        q_by_head = q.view(*q.shape[:-1], q.shape[-1] // self.head_dim,
                           self.head_dim)
        q_by_head = self.q_norm.forward_native(q_by_head)
        q = q_by_head.view(q.shape)

        k_by_head = k.view(*k.shape[:-1], k.shape[-1] // self.head_dim,
                           self.head_dim)
        k_by_head = self.k_norm.forward_native(k_by_head)
        k = k_by_head.view(k.shape)

        q, k = self.rotary_emb(positions, q, k)
        attn_output = self.attn(q, k, v, kv_cache, attn_metadata)
        output, _ = self.o_proj(attn_output)
        return output


class Qwen3MoeDecoderLayer(nn.Module):

    def __init__(
        self,
        config: PretrainedConfig,
        cache_config: Optional[CacheConfig] = None,
        quant_config: Optional[QuantizationConfig] = None,
        prefix: str = "",
    ) -> None:
        super().__init__()
        self.hidden_size = config.hidden_size
        rope_theta = getattr(config, "rope_theta", 10000)
        rope_scaling = getattr(config, "rope_scaling", None)
        max_position_embeddings = getattr(config, "max_position_embeddings",
                                          8192)
        self.self_attn = Qwen3MoeAttention(
            hidden_size=self.hidden_size,
            num_heads=config.num_attention_heads,
            num_kv_heads=config.num_key_value_heads,
            rope_theta=rope_theta,
            rope_scaling=rope_scaling,
            max_position_embeddings=max_position_embeddings,
            rms_norm_eps=config.rms_norm_eps,
            qkv_bias=getattr(config, 'attention_bias', False),
            head_dim=getattr(config, 'head_dim', None),
            cache_config=cache_config,
            quant_config=quant_config,
            prefix=f"{prefix}.self_attn",
        )

        # Note: Qwen/Qwen2-57B-A14B-Instruct does not have
        # `mlp_only_layers` in the config.
        layer_idx = extract_layer_index(prefix)
        mlp_only_layers = ([] if not hasattr(config, "mlp_only_layers") else
                           config.mlp_only_layers)
        if (layer_idx not in mlp_only_layers) and (
                config.num_experts > 0 and
            (layer_idx + 1) % config.decoder_sparse_step == 0):
            self.mlp = Qwen3MoeSparseMoeBlock(config=config,
                                              quant_config=quant_config)
        else:
            self.mlp = Qwen3MoeMLP(hidden_size=config.hidden_size,
                                   intermediate_size=config.intermediate_size,
                                   hidden_act=config.hidden_act,
                                   quant_config=quant_config,
                                   prefix=f"{prefix}.mlp")
        self.input_layernorm = RMSNorm(config.hidden_size,
                                       eps=config.rms_norm_eps)
        self.post_attention_layernorm = RMSNorm(config.hidden_size,
                                                eps=config.rms_norm_eps)

    def forward(
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
        kv_cache: torch.Tensor,
        attn_metadata: AttentionMetadata,
        residual: Optional[torch.Tensor],
    ) -> torch.Tensor:
        # Self Attention
        if residual is None:
            residual = hidden_states
            hidden_states = self.input_layernorm(hidden_states)
        else:
            hidden_states, residual = self.input_layernorm(
                hidden_states, residual)
        hidden_states = self.self_attn(
            positions=positions,
            hidden_states=hidden_states,
            kv_cache=kv_cache,
            attn_metadata=attn_metadata,
        )

        # Fully Connected
        hidden_states, residual = self.post_attention_layernorm(
            hidden_states, residual)
        hidden_states = self.mlp(hidden_states)
        return hidden_states, residual


@support_torch_compile
class Qwen3MoeModel(nn.Module):

    def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
        super().__init__()

        config = vllm_config.model_config.hf_config
        cache_config = vllm_config.cache_config
        quant_config = vllm_config.quant_config

        self.padding_idx = config.pad_token_id
        self.vocab_size = config.vocab_size
        self.config = config

        self.embed_tokens = VocabParallelEmbedding(
            config.vocab_size,
            config.hidden_size,
            prefix=f"{prefix}.embed_tokens")

        self.start_layer, self.end_layer, self.layers = make_layers(
            config.num_hidden_layers,
            lambda prefix: Qwen3MoeDecoderLayer(config=config,
                                                cache_config=cache_config,
                                                quant_config=quant_config,
                                                prefix=prefix),
            prefix=f"{prefix}.layers",
        )
        self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        self.make_empty_intermediate_tensors = (
            make_empty_intermediate_tensors_factory(
                ["hidden_states", "residual"], config.hidden_size))

    def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
        return self.embed_tokens(input_ids)

    def forward(
        self,
        input_ids: torch.Tensor,
        positions: torch.Tensor,
        kv_caches: List[torch.Tensor],
        attn_metadata: AttentionMetadata,
        intermediate_tensors: Optional[IntermediateTensors] = None,
        inputs_embeds: Optional[torch.Tensor] = None,
    ) -> Union[torch.Tensor, IntermediateTensors]:
        if get_pp_group().is_first_rank:
            if inputs_embeds is not None:
                hidden_states = inputs_embeds
            else:
                hidden_states = self.get_input_embeddings(input_ids)
            residual = None
        else:
            assert intermediate_tensors is not None
            hidden_states = intermediate_tensors["hidden_states"]
            residual = intermediate_tensors["residual"]
        for i in range(self.start_layer, self.end_layer):
            layer = self.layers[i]
            hidden_states, residual = layer(positions, hidden_states,
                                            kv_caches[i - self.start_layer],
                                            attn_metadata, residual)
        if not get_pp_group().is_last_rank:
            return IntermediateTensors({
                "hidden_states": hidden_states,
                "residual": residual
            })
        hidden_states, _ = self.norm(hidden_states, residual)
        return hidden_states


class Qwen3MoeForCausalLM(nn.Module, SupportsPP):

    fall_back_to_pt_during_load = False

    def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
        super().__init__()
        config = vllm_config.model_config.hf_config
        quant_config = vllm_config.quant_config
        self.config = config
        self.quant_config = quant_config
        self.model = Qwen3MoeModel(vllm_config=vllm_config,
                                   prefix=maybe_prefix(prefix, "model"))
        self.lm_head = ParallelLMHead(config.vocab_size,
                                      config.hidden_size,
                                      quant_config=quant_config)
        if self.config.tie_word_embeddings:
            self.lm_head.weight = self.model.embed_tokens.weight
        self.logits_processor = LogitsProcessor(config.vocab_size)
        self.sampler = get_sampler()
        self.make_empty_intermediate_tensors = (
            self.model.make_empty_intermediate_tensors)

    def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
        return self.model.get_input_embeddings(input_ids)

    def forward(
        self,
        input_ids: torch.Tensor,
        positions: torch.Tensor,
        kv_caches: List[torch.Tensor],
        attn_metadata: AttentionMetadata,
        intermediate_tensors: Optional[IntermediateTensors] = None,
        inputs_embeds: Optional[torch.Tensor] = None,
    ) -> Union[torch.Tensor, IntermediateTensors]:
        hidden_states = self.model(input_ids, positions, kv_caches,
                                   attn_metadata, intermediate_tensors,
                                   inputs_embeds)
        return hidden_states

    def compute_logits(
        self,
        hidden_states: torch.Tensor,
        sampling_metadata: SamplingMetadata,
    ) -> Optional[torch.Tensor]:
        logits = self.logits_processor(self.lm_head, hidden_states,
                                       sampling_metadata)
        return logits

    def sample(
        self,
        logits: Optional[torch.Tensor],
        sampling_metadata: SamplingMetadata,
    ) -> Optional[SamplerOutput]:
        next_tokens = self.sampler(logits, sampling_metadata)
        return next_tokens

    def load_weights(self, weights: Iterable[Tuple[str,
                                                   torch.Tensor]]) -> Set[str]:
        stacked_params_mapping = [
            # (param_name, shard_name, shard_id)
            ("qkv_proj", "q_proj", "q"),
            ("qkv_proj", "k_proj", "k"),
            ("qkv_proj", "v_proj", "v"),
            ("gate_up_proj", "gate_proj", 0),
            ("gate_up_proj", "up_proj", 1),
        ]

        # Params for weights, fp8 weight scales, fp8 activation scales
        # (param_name, weight_name, expert_id, shard_id)
        expert_params_mapping = FusedMoE.make_expert_params_mapping(
            ckpt_gate_proj_name="gate_proj",
            ckpt_down_proj_name="down_proj",
            ckpt_up_proj_name="up_proj",
            num_experts=self.config.num_experts)

        params_dict = dict(self.named_parameters())
        loaded_params: Set[str] = set()
        for name, loaded_weight in weights:
            if "rotary_emb.inv_freq" in name:
                continue
            for (param_name, weight_name, shard_id) in stacked_params_mapping:
                # Skip non-stacked layers and experts (experts handled below).
                if weight_name not in name:
                    continue
                # We have mlp.experts[0].gate_proj in the checkpoint.
                # Since we handle the experts below in expert_params_mapping,
                # we need to skip here BEFORE we update the name, otherwise
                # name will be updated to mlp.experts[0].gate_up_proj, which
                # will then be updated below in expert_params_mapping
                # for mlp.experts[0].gate_gate_up_proj, which breaks load.
                if "mlp.experts" in name:
                    continue
                name = name.replace(weight_name, param_name)
                # Skip loading extra bias for GPTQ models.
                if ((name.endswith(".bias") or name.endswith("_bias"))
                        and name not in params_dict):
                    continue
                # Skip layers on other devices.
                if is_pp_missing_parameter(name, self):
                    continue
                if name not in params_dict:
                    continue

                param = params_dict[name]
                weight_loader = param.weight_loader
                weight_loader(param, loaded_weight, shard_id)
                break
            else:
                for mapping in expert_params_mapping:
                    param_name, weight_name, expert_id, shard_id = mapping
                    if weight_name not in name:
                        continue
                    name = name.replace(weight_name, param_name)
                    # Skip layers on other devices.
                    if is_pp_missing_parameter(name, self):
                        continue
                    # Skip loading extra bias for GPTQ models.
                    if ((name.endswith(".bias") or name.endswith("_bias"))
                            and name not in params_dict):
                        continue
                    param = params_dict[name]
                    weight_loader = param.weight_loader
                    weight_loader(param,
                                  loaded_weight,
                                  name,
                                  shard_id=shard_id,
                                  expert_id=expert_id)
                    break
                else:
                    # Skip loading extra bias for GPTQ models.
                    if ((name.endswith(".bias") or name.endswith("_bias"))
                            and name not in params_dict):
                        continue
                    # Skip layers on other devices.
                    if is_pp_missing_parameter(name, self):
                        continue
                    # Remapping the name of FP8 kv-scale.
                    if name.endswith("kv_scale"):
                        remapped_kv_scale_name = name.replace(
                            ".kv_scale", ".attn.kv_scale")
                        if remapped_kv_scale_name not in params_dict:
                            print_warning_once(
                                "Found kv scale in the checkpoint "
                                f"(e.g. {name}), but not found the expected "
                                f"name in the model "
                                f"(e.g. {remapped_kv_scale_name}). "
                                "kv-scale is not loaded.")
                            continue
                        else:
                            name = remapped_kv_scale_name
                    param = params_dict[name]
                    weight_loader = getattr(param, "weight_loader",
                                            default_weight_loader)
                    weight_loader(param, loaded_weight)
            loaded_params.add(name)
        return loaded_params
