chatlearn/utils/megatron_utils.py (123 lines of code) (raw):

# Copyright 2024 Alibaba Group Holding Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """megatron utils""" import functools import re import os import subprocess import torch from chatlearn.utils.megatron_import_helper import get_args from chatlearn.utils.megatron_import_helper import mpu from chatlearn.utils.megatron_import_helper import parse_args, validate_args from chatlearn.utils.megatron_import_helper import _load_base_checkpoint from chatlearn.utils.megatron_import_helper import load_args_from_checkpoint from chatlearn.utils.megatron_import_helper import load_checkpoint as megatron_load_checkpoint from chatlearn.utils.megatron_import_helper import set_global_variables from chatlearn.utils.megatron_import_helper import unwrap_model from chatlearn.utils.megatron_import_helper import _initialize_distributed, _set_random_seed, _init_autoresume, _compile_dependencies from chatlearn.utils.logger import logger from chatlearn.utils.utils import get_use_legacy_models # regex to parse out layer number from param name layer_re = re.compile(r'layers\.([0-9]+)') def update_layer_num(start_layer_num, m): # This assumes no interleaved pipeline execution layer = int(m.group(1)) layer += start_layer_num return f'layers.{layer}' def build_pipeline_layer_name_mapping(src_layer_offset, tgt_layer_offset, tgt_last_stage, model, requires_grad): """ remap pipeline layer_name. For each pipeline stage, the layer number starts with 0. Args: src_layer_offset: layer offset of src model tgt_layer_offset: layer offset of target model tgt_last_stage: is target model in last stage model: megatron model requires_grad: whether the layer requires grad """ name_mapping = {} for src_name, partition_param in model.named_parameters(): if requires_grad: if not partition_param.requires_grad: continue if src_name.endswith("word_embeddings.weight") \ and "language_model" not in src_name \ and hasattr(unwrap_model(model), "language_model"): # See comment in MegatronModule.initialize_word_embeddings() if not tgt_last_stage: tgt_name = src_name.replace("word_embeddings.weight", "language_model.embedding.word_embeddings.weight") else: tgt_name = src_name else: # Translate destination layer number (0-N for each partition) # to source layer number (single-model layer number) # e.g. for src model with 8 layers, src_num_stage=4, dst_num_stage=2 # for src_model, stage offsets are [0, 2, 4, 6]. for dst model, stage offsets are [0, 4] # then the start layer_num of src->dst is as follows: # stage0 0->0 stage1 0->(2-0) stage2 0->(4-4) stage3 0->(6-4) start_layer_num = src_layer_offset - tgt_layer_offset _update_layer_num = functools.partial(update_layer_num, start_layer_num) tgt_name = re.sub(layer_re, _update_layer_num, src_name) name_mapping[tgt_name] = src_name return name_mapping def initialize_megatron( # pylint: disable=dangerous-default-value extra_args_provider=None, args_defaults={}, ignore_unknown_args=False, allow_no_cuda=False, args_dict=None ): """Set global variables, initialize distributed, and set autoresume and random seeds. `allow_no_cuda` should not be set unless using megatron for cpu only data processing. In general this arg should not be set unless you know what you are doing. Returns a function to finalize distributed env initialization (optionally, only when args.lazy_mpu_init == True) """ if not allow_no_cuda: # Make sure cuda is available. assert torch.cuda.is_available(), "Megatron requires CUDA." # Parse arguments args = parse_args(extra_args_provider, ignore_unknown_args) if args_dict: for key, value in args_dict.items(): if value == "None": value = None if hasattr(args, key): default_value = getattr(args, key) if default_value is not None and value is not None: default_type = type(default_value) if not isinstance(value, default_type): value = default_type(value) setattr(args, key, value) if args.use_checkpoint_args or args_defaults.get("use_checkpoint_args", False): assert args.load is not None, "--use-checkpoints-args requires --load argument" load_args_from_checkpoint(args) validate_args(args, args_defaults) # set global args, build tokenizer, and set adlr-autoresume, # tensorboard-writer, and timers. set_global_variables(args) # torch.distributed initialization def finish_mpu_init(): args = get_args() # Pytorch distributed. _initialize_distributed() # Random seeds for reproducibility. if args.rank == 0: print("> setting random seeds to {} ...".format(args.seed)) _set_random_seed(args.seed, args.data_parallel_random_init) args = get_args() if args.lazy_mpu_init: # TODO is this still a necessary option? args.use_cpu_initialization = True # delayed initialization of DDP-related stuff # We only set basic DDP globals mpu.set_tensor_model_parallel_world_size(args.tensor_model_parallel_size) # and return function for external DDP manager # to call when it has DDP initialized mpu.set_tensor_model_parallel_rank(args.rank) return finish_mpu_init else: # Megatron's MPU is the master. Complete initialization right away. finish_mpu_init() # Autoresume. _init_autoresume() # Compile dependencies. _compile_dependencies() # No continuation function return None def load_checkpoint(*_args, **kwargs): adaptive_parallel_strategy = False if "adaptive_parallel_strategy" in kwargs: adaptive_parallel_strategy = kwargs.pop("adaptive_parallel_strategy") if not adaptive_parallel_strategy: return megatron_load_checkpoint(*_args, **kwargs) args = get_args() target_tp = args.tensor_model_parallel_size target_pp = args.pipeline_model_parallel_size state_dict, _, _ = _load_base_checkpoint(args.load, rank0=True) args.iteration = state_dict['iteration'] checkpoint_args = state_dict['args'] checkpoint_tp = checkpoint_args.tensor_model_parallel_size checkpoint_pp = checkpoint_args.pipeline_model_parallel_size if target_tp != checkpoint_tp or target_pp != checkpoint_pp: script_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), "../tools/megatron_checkpoint_utils.py") save_dir = args.load[:-1] if args.load.endswith("/") else args.load save_dir = save_dir + f"-transform-tp{target_tp}-pp{target_pp}" if not os.path.exists(save_dir): # use last rank so we can determin model_type by whether last pipeline stage contains pooler_head if torch.distributed.get_rank() == (torch.distributed.get_world_size() - 1): model_type = "GPT" for key in unwrap_model(_args[0])[0].state_dict().keys(): if 'pooler_head' in key: model_type = "REWARD" break use_legacy_models = get_use_legacy_models(args) if use_legacy_models: cmd = f"python {script_path} --model-type {model_type} --load-dir {args.load} " + \ f"--save-dir {save_dir} --target-tensor-parallel-size {target_tp} " + \ f"--target-pipeline-parallel-size {target_pp}" else: cmd = f"python {script_path} --model-type {model_type} --loader mcore --load-dir {args.load} " + \ f"--saver mcore --save-dir {save_dir} --target-tensor-parallel-size {target_tp} " + \ f"--target-pipeline-parallel-size {target_pp}" logger.info(f"Transforming checkpoint for new parallel strategies {cmd}") subprocess.run(cmd, shell=True, check=True) torch.distributed.barrier() args.load = save_dir logger.info(f"Using transformed checkpoint {save_dir}") return megatron_load_checkpoint(*_args, **kwargs)