easycv/models/detection3d/detectors/bevformer/bevformer_head.py (3 lines): - line 274: if only_bev: # only use encoder to obtain BEV features, TODO: refine the workaround - line 326: # TODO: check the shape of reference - line 369: # TODO: check if using sigmoid easycv/toolkit/torchacc/convert_ops.py (3 lines): - line 166: # TODO: add initialize attribute - line 339: # TODO: remove it, fix torch.tensor to adapt torch.jit - line 349: # TODO: remove it, fix torch.cat to support multiple types of arguments easycv/core/visualization/open3d_vis.py (3 lines): - line 163: # TODO: support score and class info - line 235: # TODO: fix problem of current coordinate system - line 305: # TODO: support score and class info easycv/models/segmentation/utils/criterion.py (3 lines): - line 50: # TODO make this more general - line 57: # TODO make it support different-sized images - line 243: # TODO use valid to mask invalid areas due to padding in loss easycv/core/optimizer/lamb.py (2 lines): - line 88: # FIXME it'd be nice to remove explicit tensor conversion of scalars - line 152: # FIXME nested where required since logical and/or not easycv/models/loss/iou_loss.py (2 lines): - line 280: # TODO: remove this in the future - line 321: # TODO: remove this in the future easycv/predictors/reid_predictor.py (2 lines): - line 109: # TODO: fault tolerance - line 134: # TODO: support append to file easycv/utils/ms_utils.py (2 lines): - line 38: # TODO: support multi eval_pipelines - line 39: # TODO: support for adding customized required keys to the configuration file easycv/core/visualization/image.py (2 lines): - line 89: # TODO: Unify the font of cv2 and PIL, and auto get font_size according to the font_scale - line 177: # TODO: Unify the font of cv2 and PIL, and auto get font_size according to the font_scale easycv/datasets/detection/pipelines/mm_transforms.py (2 lines): - line 871: # TODO: refactor the override option in Resize - line 2144: # TODO: add more filter options easycv/datasets/classification/data_sources/class_list.py (2 lines): - line 44: # TODO: support return list, donot save split file - line 45: # TODO: support loading list_file that have already been split easycv/hooks/sync_random_size_hook.py (2 lines): - line 27: # TODO need to fix some bugs, to update by 10 iters but when training update by 1 epoch - line 61: # TODO some bugs need fix, to update by 10 iters but when training update by 1 epoch easycv/models/selfsup/dino.py (2 lines): - line 277: # TODO: unify the use of init_weight - line 383: # TODO: fix extract feature easycv/predictors/base.py (2 lines): - line 418: # TODO: fault tolerance - line 444: # TODO: support append to file easycv/datasets/classification/data_sources/image_list.py (2 lines): - line 70: # TODO: support return list, donot save split file - line 71: # TODO: support loading list_file that have already been split easycv/datasets/shared/pipelines/third_transforms_wrapper.py (1 line): - line 60: # TODO: find a more pretty way to wrap third transfomrs or import fixed api to warp easycv/datasets/shared/__init__.py (1 line): - line 17: # TODO: merge `DaliImageNetTFRecordDataSet` and `DaliTFRecordMultiViewDataset` easycv/datasets/classification/raw.py (1 line): - line 81: # TODO: support img_metas for torch.jit easycv/datasets/shared/pipelines/dali_transforms.py (1 line): - line 149: # TODO: support random crop_pos by iter easycv/toolkit/modelscope/trainers/trainer.py (1 line): - line 116: # TODO: use ast index to detect whether the hook is in modelscope easycv/predictors/pose_predictor.py (1 line): - line 306: # TODO: Fix when multi people are detected in each sample, easycv/datasets/detection3d/nuscenes_dataset.py (1 line): - line 456: # TODO: check whether this is necessary easycv/models/backbones/efficientformer.py (1 line): - line 487: # TODO: support kd pipeline easycv/models/loss/set_criterion/set_criterion.py (1 line): - line 85: # TODO this should probably be a separate loss, not hacked in this one here easycv/models/backbones/swin_transformer_dynamic.py (1 line): - line 569: # # FIXME look at relaxing size constraints easycv/datasets/loader/build_loader.py (1 line): - line 111: data_source=dataset) if shuffle else None # TODO: set replace easycv/models/detection/detectors/fcos/fcos_head.py (1 line): - line 489: # TODO: figure out why these two are different easycv/datasets/selfsup/data_sources/imagenet_feature.py (1 line): - line 43: # TODO: multiprocess loading to accelerate easycv/toolkit/modelscope/pipelines/base.py (1 line): - line 86: # TODO: refine config compatibility problems easycv/utils/dist_utils.py (1 line): - line 110: # TODO: May try not to use gloo in the future easycv/models/backbones/xcit_transformer.py (1 line): - line 257: # FIXME: A hack for models pre-trained with layernorm over all the tokens not just the CLS easycv/predictors/wholebody_keypoints_predictor.py (1 line): - line 190: # TODO: Fix when multi people are detected in each sample, easycv/core/post_processing/merge_augs.py (1 line): - line 60: # TODO: use a more elegent way to deal with nms easycv/models/classification/classification.py (1 line): - line 298: # TODO: support Dict[any, any] type of img_metas easycv/predictors/hand_keypoints_predictor.py (1 line): - line 126: # TODO: support multi bboxes for a single sample easycv/models/utils/x3d_transformer.py (1 line): - line 74: # TODO: change the name to `norm` easycv/models/loss/cross_entropy_loss.py (1 line): - line 215: # TODO: handle these two reserved arguments easycv/file/file_io.py (1 line): - line 280: # TODO: 网络不稳时try,其他错误直接抛出 easycv/datasets/pose/data_sources/top_down.py (1 line): - line 350: # TODO: optimize fault tolerance for image load configs/config_templates/yolox_itag.py (1 line): - line 19: # TODO: merge `img_size` and `img_scale`, support tuple `image_size` for `DetSourcePAI` easycv/hooks/optimizer_hook.py (1 line): - line 146: # TODO: find a more pretty way to adapt mmdet