easycv/models/detection/dense_heads/base_dense_head.py [33:212]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    def get_bboxes(self,
                   cls_scores,
                   bbox_preds,
                   score_factors=None,
                   img_metas=None,
                   cfg=None,
                   rescale=False,
                   with_nms=True,
                   **kwargs):
        """Transform network outputs of a batch into bbox results.

        Note: When score_factors is not None, the cls_scores are
        usually multiplied by it then obtain the real score used in NMS,
        such as CenterNess in FCOS, IoU branch in ATSS.

        Args:
            cls_scores (list[Tensor]): Classification scores for all
                scale levels, each is a 4D-tensor, has shape
                (batch_size, num_priors * num_classes, H, W).
            bbox_preds (list[Tensor]): Box energies / deltas for all
                scale levels, each is a 4D-tensor, has shape
                (batch_size, num_priors * 4, H, W).
            score_factors (list[Tensor], Optional): Score factor for
                all scale level, each is a 4D-tensor, has shape
                (batch_size, num_priors * 1, H, W). Default None.
            img_metas (list[dict], Optional): Image meta info. Default None.
            cfg (mmcv.Config, Optional): Test / postprocessing configuration,
                if None, test_cfg would be used.  Default None.
            rescale (bool): If True, return boxes in original image space.
                Default False.
            with_nms (bool): If True, do nms before return boxes.
                Default True.

        Returns:
            list[list[Tensor, Tensor]]: Each item in result_list is 2-tuple.
                The first item is an (n, 5) tensor, where the first 4 columns
                are bounding box positions (tl_x, tl_y, br_x, br_y) and the
                5-th column is a score between 0 and 1. The second item is a
                (n,) tensor where each item is the predicted class label of
                the corresponding box.
        """
        assert len(cls_scores) == len(bbox_preds)

        if score_factors is None:
            # e.g. Retina, FreeAnchor, Foveabox, etc.
            with_score_factors = False
        else:
            # e.g. FCOS, PAA, ATSS, AutoAssign, etc.
            with_score_factors = True
            assert len(cls_scores) == len(score_factors)

        num_levels = len(cls_scores)

        featmap_sizes = [cls_scores[i].shape[-2:] for i in range(num_levels)]
        mlvl_priors = self.prior_generator.grid_priors(
            featmap_sizes,
            dtype=cls_scores[0].dtype,
            device=cls_scores[0].device)

        result_list = []

        for img_id in range(len(img_metas)):
            img_meta = img_metas[img_id]
            cls_score_list = select_single_mlvl(cls_scores, img_id)
            bbox_pred_list = select_single_mlvl(bbox_preds, img_id)
            if with_score_factors:
                score_factor_list = select_single_mlvl(score_factors, img_id)
            else:
                score_factor_list = [None for _ in range(num_levels)]

            results = self._get_bboxes_single(cls_score_list, bbox_pred_list,
                                              score_factor_list, mlvl_priors,
                                              img_meta, cfg, rescale, with_nms,
                                              **kwargs)
            result_list.append(results)
        return result_list

    def _get_bboxes_single(self,
                           cls_score_list,
                           bbox_pred_list,
                           score_factor_list,
                           mlvl_priors,
                           img_meta,
                           cfg,
                           rescale=False,
                           with_nms=True,
                           **kwargs):
        """Transform outputs of a single image into bbox predictions.

        Args:
            cls_score_list (list[Tensor]): Box scores from all scale
                levels of a single image, each item has shape
                (num_priors * num_classes, H, W).
            bbox_pred_list (list[Tensor]): Box energies / deltas from
                all scale levels of a single image, each item has shape
                (num_priors * 4, H, W).
            score_factor_list (list[Tensor]): Score factor from all scale
                levels of a single image, each item has shape
                (num_priors * 1, H, W).
            mlvl_priors (list[Tensor]): Each element in the list is
                the priors of a single level in feature pyramid. In all
                anchor-based methods, it has shape (num_priors, 4). In
                all anchor-free methods, it has shape (num_priors, 2)
                when `with_stride=True`, otherwise it still has shape
                (num_priors, 4).
            img_meta (dict): Image meta info.
            cfg (mmcv.Config): Test / postprocessing configuration,
                if None, test_cfg would be used.
            rescale (bool): If True, return boxes in original image space.
                Default: False.
            with_nms (bool): If True, do nms before return boxes.
                Default: True.

        Returns:
            tuple[Tensor]: Results of detected bboxes and labels. If with_nms
                is False and mlvl_score_factor is None, return mlvl_bboxes and
                mlvl_scores, else return mlvl_bboxes, mlvl_scores and
                mlvl_score_factor. Usually with_nms is False is used for aug
                test. If with_nms is True, then return the following format

                - det_bboxes (Tensor): Predicted bboxes with shape \
                    [num_bboxes, 5], where the first 4 columns are bounding \
                    box positions (tl_x, tl_y, br_x, br_y) and the 5-th \
                    column are scores between 0 and 1.
                - det_labels (Tensor): Predicted labels of the corresponding \
                    box with shape [num_bboxes].
        """
        if score_factor_list[0] is None:
            # e.g. Retina, FreeAnchor, etc.
            with_score_factors = False
        else:
            # e.g. FCOS, PAA, ATSS, etc.
            with_score_factors = True

        cfg = self.test_cfg if cfg is None else cfg
        img_shape = img_meta['img_shape']
        nms_pre = cfg.get('nms_pre', -1)

        mlvl_bboxes = []
        mlvl_scores = []
        mlvl_labels = []
        if with_score_factors:
            mlvl_score_factors = []
        else:
            mlvl_score_factors = None
        for level_idx, (cls_score, bbox_pred, score_factor, priors) in \
                enumerate(zip(cls_score_list, bbox_pred_list,
                              score_factor_list, mlvl_priors)):

            assert cls_score.size()[-2:] == bbox_pred.size()[-2:]

            bbox_pred = bbox_pred.permute(1, 2, 0).reshape(-1, 4)
            if with_score_factors:
                score_factor = score_factor.permute(1, 2,
                                                    0).reshape(-1).sigmoid()
            cls_score = cls_score.permute(1, 2,
                                          0).reshape(-1, self.cls_out_channels)
            if self.use_sigmoid_cls:
                scores = cls_score.sigmoid()
            else:
                # remind that we set FG labels to [0, num_class-1]
                # since mmdet v2.0
                # BG cat_id: num_class
                scores = cls_score.softmax(-1)[:, :-1]

            # After https://github.com/open-mmlab/mmdetection/pull/6268/,
            # this operation keeps fewer bboxes under the same `nms_pre`.
            # There is no difference in performance for most models. If you
            # find a slight drop in performance, you can set a larger
            # `nms_pre` than before.
            results = filter_scores_and_topk(
                scores, cfg.score_thr, nms_pre,
                dict(bbox_pred=bbox_pred, priors=priors))
            scores, labels, keep_idxs, filtered_results = results

            bbox_pred = filtered_results['bbox_pred']
            priors = filtered_results['priors']

            if with_score_factors:
                score_factor = score_factor[keep_idxs]
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



easycv/models/detection/detectors/fcos/fcos_head.py [581:754]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    def get_bboxes(self,
                   cls_scores,
                   bbox_preds,
                   score_factors=None,
                   img_metas=None,
                   cfg=None,
                   rescale=False,
                   with_nms=True,
                   **kwargs):
        """Transform network outputs of a batch into bbox results.
        Note: When score_factors is not None, the cls_scores are
        usually multiplied by it then obtain the real score used in NMS,
        such as CenterNess in FCOS, IoU branch in ATSS.
        Args:
            cls_scores (list[Tensor]): Classification scores for all
                scale levels, each is a 4D-tensor, has shape
                (batch_size, num_priors * num_classes, H, W).
            bbox_preds (list[Tensor]): Box energies / deltas for all
                scale levels, each is a 4D-tensor, has shape
                (batch_size, num_priors * 4, H, W).
            score_factors (list[Tensor], Optional): Score factor for
                all scale level, each is a 4D-tensor, has shape
                (batch_size, num_priors * 1, H, W). Default None.
            img_metas (list[dict], Optional): Image meta info. Default None.
            cfg (mmcv.Config, Optional): Test / postprocessing configuration,
                if None, test_cfg would be used.  Default None.
            rescale (bool): If True, return boxes in original image space.
                Default False.
            with_nms (bool): If True, do nms before return boxes.
                Default True.
        Returns:
            list[list[Tensor, Tensor]]: Each item in result_list is 2-tuple.
                The first item is an (n, 5) tensor, where the first 4 columns
                are bounding box positions (tl_x, tl_y, br_x, br_y) and the
                5-th column is a score between 0 and 1. The second item is a
                (n,) tensor where each item is the predicted class label of
                the corresponding box.
        """
        assert len(cls_scores) == len(bbox_preds)

        if score_factors is None:
            # e.g. Retina, FreeAnchor, Foveabox, etc.
            with_score_factors = False
        else:
            # e.g. FCOS, PAA, ATSS, AutoAssign, etc.
            with_score_factors = True
            assert len(cls_scores) == len(score_factors)

        num_levels = len(cls_scores)

        featmap_sizes = [cls_scores[i].shape[-2:] for i in range(num_levels)]
        mlvl_priors = self.prior_generator.grid_priors(
            featmap_sizes,
            dtype=cls_scores[0].dtype,
            device=cls_scores[0].device)

        result_list = []

        for img_id in range(len(img_metas)):
            img_meta = img_metas[img_id]
            cls_score_list = select_single_mlvl(cls_scores, img_id)
            bbox_pred_list = select_single_mlvl(bbox_preds, img_id)
            if with_score_factors:
                score_factor_list = select_single_mlvl(score_factors, img_id)
            else:
                score_factor_list = [None for _ in range(num_levels)]

            results = self._get_bboxes_single(cls_score_list, bbox_pred_list,
                                              score_factor_list, mlvl_priors,
                                              img_meta, cfg, rescale, with_nms,
                                              **kwargs)
            result_list.append(results)
        return result_list

    def _get_bboxes_single(self,
                           cls_score_list,
                           bbox_pred_list,
                           score_factor_list,
                           mlvl_priors,
                           img_meta,
                           cfg,
                           rescale=False,
                           with_nms=True,
                           **kwargs):
        """Transform outputs of a single image into bbox predictions.
        Args:
            cls_score_list (list[Tensor]): Box scores from all scale
                levels of a single image, each item has shape
                (num_priors * num_classes, H, W).
            bbox_pred_list (list[Tensor]): Box energies / deltas from
                all scale levels of a single image, each item has shape
                (num_priors * 4, H, W).
            score_factor_list (list[Tensor]): Score factor from all scale
                levels of a single image, each item has shape
                (num_priors * 1, H, W).
            mlvl_priors (list[Tensor]): Each element in the list is
                the priors of a single level in feature pyramid. In all
                anchor-based methods, it has shape (num_priors, 4). In
                all anchor-free methods, it has shape (num_priors, 2)
                when `with_stride=True`, otherwise it still has shape
                (num_priors, 4).
            img_meta (dict): Image meta info.
            cfg (mmcv.Config): Test / postprocessing configuration,
                if None, test_cfg would be used.
            rescale (bool): If True, return boxes in original image space.
                Default: False.
            with_nms (bool): If True, do nms before return boxes.
                Default: True.
        Returns:
            tuple[Tensor]: Results of detected bboxes and labels. If with_nms
                is False and mlvl_score_factor is None, return mlvl_bboxes and
                mlvl_scores, else return mlvl_bboxes, mlvl_scores and
                mlvl_score_factor. Usually with_nms is False is used for aug
                test. If with_nms is True, then return the following format
                - det_bboxes (Tensor): Predicted bboxes with shape \
                    [num_bboxes, 5], where the first 4 columns are bounding \
                    box positions (tl_x, tl_y, br_x, br_y) and the 5-th \
                    column are scores between 0 and 1.
                - det_labels (Tensor): Predicted labels of the corresponding \
                    box with shape [num_bboxes].
        """
        if score_factor_list[0] is None:
            # e.g. Retina, FreeAnchor, etc.
            with_score_factors = False
        else:
            # e.g. FCOS, PAA, ATSS, etc.
            with_score_factors = True

        cfg = self.test_cfg if cfg is None else cfg
        img_shape = img_meta['img_shape']
        nms_pre = cfg.get('nms_pre', -1)

        mlvl_bboxes = []
        mlvl_scores = []
        mlvl_labels = []
        if with_score_factors:
            mlvl_score_factors = []
        else:
            mlvl_score_factors = None
        for level_idx, (cls_score, bbox_pred, score_factor, priors) in \
                enumerate(zip(cls_score_list, bbox_pred_list,
                              score_factor_list, mlvl_priors)):

            assert cls_score.size()[-2:] == bbox_pred.size()[-2:]

            bbox_pred = bbox_pred.permute(1, 2, 0).reshape(-1, 4)
            if with_score_factors:
                score_factor = score_factor.permute(1, 2,
                                                    0).reshape(-1).sigmoid()
            cls_score = cls_score.permute(1, 2,
                                          0).reshape(-1, self.cls_out_channels)
            if self.use_sigmoid_cls:
                scores = cls_score.sigmoid()
            else:
                # remind that we set FG labels to [0, num_class-1]
                # since mmdet v2.0
                # BG cat_id: num_class
                scores = cls_score.softmax(-1)[:, :-1]

            # After https://github.com/open-mmlab/mmdetection/pull/6268/,
            # this operation keeps fewer bboxes under the same `nms_pre`.
            # There is no difference in performance for most models. If you
            # find a slight drop in performance, you can set a larger
            # `nms_pre` than before.
            results = filter_scores_and_topk(
                scores, cfg.score_thr, nms_pre,
                dict(bbox_pred=bbox_pred, priors=priors))
            scores, labels, keep_idxs, filtered_results = results

            bbox_pred = filtered_results['bbox_pred']
            priors = filtered_results['priors']

            if with_score_factors:
                score_factor = score_factor[keep_idxs]
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



