def __init__()

in easycv/models/backbones/edgevit.py [0:0]


    def __init__(self,
                 depth=[1, 2, 3, 2],
                 img_size=224,
                 in_chans=3,
                 num_classes=1000,
                 embed_dim=[48, 96, 240, 384],
                 head_dim=48,
                 mlp_ratio=[4] * 4,
                 qkv_bias=True,
                 qk_scale=None,
                 representation_size=None,
                 drop_rate=0.,
                 attn_drop_rate=0.,
                 drop_path_rate=0.,
                 norm_layer=partial(nn.LayerNorm, eps=1e-8),
                 sr_ratios=[4, 2, 2, 1],
                 pretrained=None):
        """
        Args:
            depth (list): depth of each stage
            img_size (int, tuple): input image size
            in_chans (int): number of input channels
            num_classes (int): number of classes for classification head
            embed_dim (list): embedding dimension of each stage
            head_dim (int): head dimension
            mlp_ratio (int): ratio of mlp hidden dim to embedding dim
            qkv_bias (bool): enable bias for qkv if True
            qk_scale (float): override default qk scale of head_dim ** -0.5 if set
            representation_size (Optional[int]): enable and set representation layer (pre-logits) to this value if set
            drop_rate (float): dropout rate
            attn_drop_rate (float): attention dropout rate
            drop_path_rate (float): stochastic depth rate
            norm_layer (nn.Module): normalization layer
        """
        super().__init__()
        self.num_classes = num_classes
        self.num_features = self.embed_dim = embed_dim  # num_features for consistency with other models
        norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6)

        self.patch_embed1 = PatchEmbed(
            img_size=img_size,
            patch_size=4,
            in_chans=in_chans,
            embed_dim=embed_dim[0])
        self.patch_embed2 = PatchEmbed(
            img_size=img_size // 4,
            patch_size=2,
            in_chans=embed_dim[0],
            embed_dim=embed_dim[1])
        self.patch_embed3 = PatchEmbed(
            img_size=img_size // 8,
            patch_size=2,
            in_chans=embed_dim[1],
            embed_dim=embed_dim[2])
        self.patch_embed4 = PatchEmbed(
            img_size=img_size // 16,
            patch_size=2,
            in_chans=embed_dim[2],
            embed_dim=embed_dim[3])

        self.pos_drop = nn.Dropout(p=drop_rate)
        dpr = [
            x.item() for x in torch.linspace(0, drop_path_rate, sum(depth))
        ]  # stochastic depth decay rule
        num_heads = [dim // head_dim for dim in embed_dim]
        self.blocks1 = nn.ModuleList([
            LGLBlock(
                dim=embed_dim[0],
                num_heads=num_heads[0],
                mlp_ratio=mlp_ratio[0],
                qkv_bias=qkv_bias,
                qk_scale=qk_scale,
                drop=drop_rate,
                attn_drop=attn_drop_rate,
                drop_path=dpr[i],
                norm_layer=norm_layer,
                sr_ratio=sr_ratios[0]) for i in range(depth[0])
        ])
        self.blocks2 = nn.ModuleList([
            LGLBlock(
                dim=embed_dim[1],
                num_heads=num_heads[1],
                mlp_ratio=mlp_ratio[1],
                qkv_bias=qkv_bias,
                qk_scale=qk_scale,
                drop=drop_rate,
                attn_drop=attn_drop_rate,
                drop_path=dpr[i + depth[0]],
                norm_layer=norm_layer,
                sr_ratio=sr_ratios[1]) for i in range(depth[1])
        ])
        self.blocks3 = nn.ModuleList([
            LGLBlock(
                dim=embed_dim[2],
                num_heads=num_heads[2],
                mlp_ratio=mlp_ratio[2],
                qkv_bias=qkv_bias,
                qk_scale=qk_scale,
                drop=drop_rate,
                attn_drop=attn_drop_rate,
                drop_path=dpr[i + depth[0] + depth[1]],
                norm_layer=norm_layer,
                sr_ratio=sr_ratios[2]) for i in range(depth[2])
        ])
        self.blocks4 = nn.ModuleList([
            LGLBlock(
                dim=embed_dim[3],
                num_heads=num_heads[3],
                mlp_ratio=mlp_ratio[3],
                qkv_bias=qkv_bias,
                qk_scale=qk_scale,
                drop=drop_rate,
                attn_drop=attn_drop_rate,
                drop_path=dpr[i + depth[0] + depth[1] + depth[2]],
                norm_layer=norm_layer,
                sr_ratio=sr_ratios[3]) for i in range(depth[3])
        ])
        self.norm = nn.BatchNorm2d(embed_dim[-1])

        # Representation layer
        if representation_size:
            self.num_features = representation_size
            self.pre_logits = nn.Sequential(
                OrderedDict([('fc', nn.Linear(embed_dim, representation_size)),
                             ('act', nn.Tanh())]))
        else:
            self.pre_logits = nn.Identity()

        self.pretrained = pretrained
        self.init_weights()